Citation: | Wu Zhouzhi, Zhang Kun, Wang Yanpei, Yu Hongxing, Zhang Lin, He Liang, Tang Changbing. Research on High Temperature Oxidation Behavior of Zirconium Alloy for Fuel Element Based on MOOSE Platform[J]. Nuclear Power Engineering, 2024, 45(1): 84-89. doi: 10.13832/j.jnpe.2024.01.0084 |
[1] |
MEYER R O. An assessment of fuel damage in postulated reactivity-initiated accidents[J]. Nuclear Technology, 2006, 155(3): 293-311. doi: 10.13182/NT06-A3763
|
[2] |
YOO H I, PARK S H. Experimental verification of a kinetic model of Zr-oxidation[J]. Journal of the Korean Ceramic Society, 2006, 43(11): 724-727. doi: 10.4191/KCERS.2006.43.11.724
|
[3] |
邱军,赵文金,GUILBERT T,等. 3种锆合金的高温氧化行为[J]. 金属学报,2011, 47(9): 1216-1220.
|
[4] |
LEISTIKOW S, SCHANZ G, ZUREK Z. Comparison of high temperature steam oxidation behavior of zircaloy-4 versus austenitic and ferritic steels under light water reactor safety aspects[C]//The Polish-German Seminar on Properties of High Temperature Alloys. Cracow, Poland: Materials Science, 1987
|
[5] |
SCHANZ G. Recommendations and supporting information on the choice of zirconium oxidation models in severe accident codes: FZKA-6827[R]. Karlsruhe: Forschungszentrum Karlsruhe GmbH, 2003.
|
[6] |
LEISTIKOW S, SCHANZ G, BERG H V, et al. Comprehensive presentation of extended Zircaloy-4 steam oxidation results 600-1600℃[C]//OECD-NEACSNI/IAEA Specialists Meeting on Water Reactor Fuel Safety and Fission Product Release in Off-Normal and Accident Conditions. Roskilde: Riso National Laboratory, 1983: 188-199.
|
[7] |
PRATER J T, COURTRIGHT E L. Zircaloy-4 oxidation at 1300 to 2400℃: NUREG/CR-4889[R]. Richland: Pacific Northwest Laboratory, 1987: 489-501.
|
[8] |
CATHCART J V, PAWEL R E, MCKEE R A, et al. Zirconium metal-water oxidation kinetics. IV. Reaction rate studies. [BWR: PWR]: ORNL/NUREG-17[R]. Oak Ridge: Oak Ridge National Lab, 1977.
|
[9] |
GEELHOOD K J, LUSCHER W G, BEYER C E, et al. FRAPTRAN 1.4: a computer code for the transient analysis of oxide fuel rods[M]. Washington: US Nuclear Regulatory Commission, 2011: 1-6.
|
[10] |
SINGH G, TERRANI K, KATOH Y. Thermo-mechanical assessment of full SiC/SiC composite cladding for LWR applications with sensitivity analysis[J]. Journal of Nuclear Materials, 2018, 499: 126-143. doi: 10.1016/j.jnucmat.2017.11.004
|
[11] |
邓超群,向烽瑞,贺亚男,等. 基于MOOSE平台的棒状燃料元件性能瞬态分析程序开发与验证[J]. 原子能科学技术,2021, 55(8): 1429-1439. doi: 10.7538/yzk.2020.youxian.0607
|
[12] |
SLAUGHTER A E, JOHNSON M J, TONKS M R, et al. MOOSE: a framework to enable rapid advances and collaboration in modeling snow and avalanches[C]//International Snow Science Workshop 2014 Proceedings. Banff: International Snow Science Workshop, 2014: 601-607.
|
[13] |
GASTON D, NEWMAN C, HANSEN G, et al. MOOSE: a parallel computational framework for coupled systems of nonlinear equations[J]. Nuclear Engineering and Design, 2009, 239(10): 1768-1778. doi: 10.1016/j.nucengdes.2009.05.021
|
[14] |
HALES D J, WILLIAMSON R L, NOVASCONE S R, et al. BISON theory manual the equations behind nuclear fuel analysis[R]. Idaho Falls: Idaho National Laboratory, 2016: 122-124.
|