Advance Search
Volume 45 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Wang Yuqing, Deng Lilin, Ni Muyi, Wu Jiewei, Tan Yi, Jing Futing, Xia Mingming, Tian Chao. Development of Test Platform for LBE Aerosol Kinetics and Preliminary Parameter Measurement[J]. Nuclear Power Engineering, 2024, 45(1): 178-185. doi: 10.13832/j.jnpe.2024.01.0178
Citation: Wang Yuqing, Deng Lilin, Ni Muyi, Wu Jiewei, Tan Yi, Jing Futing, Xia Mingming, Tian Chao. Development of Test Platform for LBE Aerosol Kinetics and Preliminary Parameter Measurement[J]. Nuclear Power Engineering, 2024, 45(1): 178-185. doi: 10.13832/j.jnpe.2024.01.0178

Development of Test Platform for LBE Aerosol Kinetics and Preliminary Parameter Measurement

doi: 10.13832/j.jnpe.2024.01.0178
  • Received Date: 2023-02-26
  • Rev Recd Date: 2023-03-30
  • Publish Date: 2024-02-15
  • In Lead-Bismuth Fast Reactors, the primary coolant liquid lead-bismuth eutectic (LBE) is subject to neutron irradiation, which generates the radioactive nuclide polonium (210Po). Given the volatility of 210Po, it is essential to thoroughly investigate its migration and diffusion behavior. Aerosols are the primary carriers of volatile radioactive nuclides. Drawing on domestic and international experience in the design and operation of reactor aerosol experimental platforms, this paper presents the development of an LBE aerosol kinetics experimental platform. By combining scanning electrical mobility and optical scattering methods, a broad-spectrum measurement of LBE aerosol particle count and size distribution was achieved. The results indicate that the particle size distribution of LBE aerosols is mainly at the nano-level. Preliminary LBE aerosol kinetics analysis was conducted through data processing of the measurement results, thereby providing key parameters for subsequent safety analysis of radioactive aerosols in Lead-Bismuth Fast Reactors.

     

  • loading
  • [1]
    CINOTTI L, SMITH C F, SEKIMOTO H, et al. Lead-cooled system design and challenges in the frame of Generation IV International Forum[J]. Journal of Nuclear Materials, 2011, 415(3): 245-253. doi: 10.1016/j.jnucmat.2011.04.042
    [2]
    DENG L L, WANG Y Q, ZHAI Z, et al. Multi-physics model development for polonium transport behavior in a lead-cooled fast reactor[J]. Frontiers in Energy Research, 2021, 9: 711916. doi: 10.3389/fenrg.2021.711916
    [3]
    LARSON C L. Polonium extraction techniques for a lead-bismuth cooled fast reactor[D]. Cambridge: Massachusetts Institute of Technology, 2002.
    [4]
    LI N, YEFIMOV E, PANKRATOV D. Polonium release from an ATW burner system with liquid lead-bismuth coolant:LA-UR-98-1995[R]. Washington: USDOE Assistant Secretary for Management and Administration, 1998.
    [5]
    BUONGIORNO J. Conceptual design of a lead-bismuth cooled fast reactor with in-vessel direct-contact steam generation[D]. Cambridge: Massachusetts Institute of Technology, 2001.
    [6]
    陈林林,孙雪霆,魏严凇,等. 安全壳内气溶胶扩散泳行为的试验方法研究[J]. 辐射防护,2017, 37(1): 45-49.
    [7]
    LUO X W, YU S Y. Deposition of particles in turbulent pipe flow[J]. China Particuology, 2006, 4(1): 31-34. doi: 10.1016/S1672-2515(07)60230-9
    [8]
    Mäkynen J M, JOKINIEMI J K, AHONEN P P, et al. AHMED experiments on hygroscopic and inert aerosol behaviour in LWR containment conditions: Experimental results[J]. Nuclear Engineering and Design, 1997, 178(1): 45-59. doi: 10.1016/S0029-5493(97)00174-X
    [9]
    NEA. International standard problem ISP37: VANAM M3 - A Multi compartment aerosol depletion test with hygroscopic aerosol material: comparison report[R]. Paris:OECD, 1996.
    [10]
    肖增光,孙雪霆,陈林林,等. 安全壳内气溶胶沉积试验的浓度测点设计[J]. 核安全,2017, 16(1): 82-85,94. doi: 10.16432/j.cnki.1672-5360.2017.01.013
    [11]
    SNEPVANGERS L J M, VAN DE VATE J F. Diffusiophoresis of fission product aerosol in an LWR containment after core meltdown:EUR-11376[R]. Luxembourg: Commission of the European Communities, 1987.
    [12]
    CLEMENT B, HANNIET-GIRAULT N, REPETTO G, et al. LWR severe accident simulation: synthesis of the results and interpretation of the first Phebus FP experiment FPT0[J]. Nuclear Engineering and Design, 2003, 226(1): 5-82. doi: 10.1016/S0029-5493(03)00157-2
    [13]
    KRISCHER W, RUBINSTEIN M C. The phebus fission product project: presentation of the experimental programme and test facility[M]. London: CRC Press, 1992: 6-246.
    [14]
    陈林林,魏严凇,史晓磊,等. 安全壳内剥蚀引起的气溶胶颗粒再悬浮[J]. 中国粉体技术,2020, 26(5): 1-6. doi: 10.13732/j.issn.1008-5548.2020.05.001
    [15]
    HAN S, LI Y, WEN G, et al. Study on thermophoretic deposition of micron-sized aerosol particles by direct numerical simulation and experiments[J]. Ecotoxicology and Environmental Safety, 2022, 233: 113316. doi: 10.1016/j.ecoenv.2022.113316
    [16]
    王善普,佟立丽,曹学武. 钢制安全壳窄缝内气溶胶冷凝滞留实验研究[J]. 核动力工程,2022, 43(6): 128-132. doi: 10.13832/j.jnpe.2022.06.0128
    [17]
    于汇宇,谷海峰,孙中宁,等. 喷淋去除气溶胶的模型及实验研究[J]. 哈尔滨工程大学学报,2023, 44(5): 815-822. doi: 10.11990/jheu.202108021
    [18]
    向晓东. 气溶胶科学技术基础[M]. 北京: 中国环境科学出版社,2012: 21-27.
    [19]
    MPPD: Multiple-path particle dosimetry model (2023) ARA,V3.04. Available at: https://www.ara.com/mppd/ (Accessed: 09 March 2023).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (190) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return