Advance Search
Volume 45 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Pan Jun, Li Yibin, Qu Zehui, Guo Yanlei, Yang Congxin, Wang Xiuyong. Numerical Analysis of Transient Process of HPR1000 Reactor Coolant Pump Shaft Jamming Accident Condition[J]. Nuclear Power Engineering, 2024, 45(1): 201-209. doi: 10.13832/j.jnpe.2024.01.0201
Citation: Pan Jun, Li Yibin, Qu Zehui, Guo Yanlei, Yang Congxin, Wang Xiuyong. Numerical Analysis of Transient Process of HPR1000 Reactor Coolant Pump Shaft Jamming Accident Condition[J]. Nuclear Power Engineering, 2024, 45(1): 201-209. doi: 10.13832/j.jnpe.2024.01.0201

Numerical Analysis of Transient Process of HPR1000 Reactor Coolant Pump Shaft Jamming Accident Condition

doi: 10.13832/j.jnpe.2024.01.0201
  • Received Date: 2023-03-20
  • Rev Recd Date: 2023-11-01
  • Publish Date: 2024-02-15
  • In order to reveal the pipeline transient mechanism under the shaft jamming accident condition of the reactor coolant pump (RCP), a simplified fluid domain model of the coolant system of the three-loop reactor was established by matching the relationship between the resistance characteristics of the reactor coolant pump and the pipeline of the primary system. Based on the computational fluid dynamics (CFD) method, the actual transient flow process and the real-time change rule of parameters in the reactor coolant system under shaft jamming accident condition were reproduced, and the accident safety evaluation method of reactor coolant system under shaft jamming accident condition was established. The transient changes of main pipeline pressure, wall load of transition bend and pressure of three typical heat transfer tubes with radius of curvature were analyzed under shaft jamming accident condition. The results show that: in the process of the shaft jamming accident, the flow in the accident loop decreases to 0 m³/h and then increases in reverse, and reverse flow occurs. The pressure and wall load of the accident loop and other loops will change dramatically after the shaft jamming accident, and the change degree of the accident loop is greater. The pressure oscillation law of the heat transfer tubes with different curvature radii is basically the same, and the peak pressure of the monitoring point increases gradually along the direction from the inlet to the outlet of each heat transfer tube.

     

  • loading
  • [1]
    LONG Y, WANG D Z, YIN J L, et al. Numerical investigation on the unsteady characteristics of reactor coolant pumps with non-uniform inflow[J]. Nuclear Engineering and Design, 2017, 320: 65-76. doi: 10.1016/j.nucengdes.2017.04.027
    [2]
    LONG Y, WANG D Z, YIN J L, et al. Experimental investigation on the unsteady pressure pulsation of reactor coolant pumps with non-uniform inflow[J]. Annals of Nuclear Energy, 2017, 110: 501-510. doi: 10.1016/j.anucene.2017.07.010
    [3]
    叶道星,赖喜德,文海罡,等. 核主泵断电惰转停机过渡过程性能特性研究[J]. 动力工程学报,2020, 40(7): 593-599. doi: 10.19805/j.cnki.jcspe.2020.07.011
    [4]
    黎义斌,瞿泽晖,郭艳磊,等. 核主泵卡轴事故瞬变过程的水动力特性研究[J]. 核动力工程,2023, 44(2): 177-184. doi: 10.13832/j.jnpe.2023.02.0177
    [5]
    黄晨,胡嘉杨,赖旭. 三机式抽水蓄能电站三机运行方式下水泵停泵过渡过程研究[J]. 水电能源科学,2018, 36(11): 148-152.
    [6]
    刘金昊,吴建华. 西山供水工程事故停泵水力过渡过程计算及水锤防护[J]. 水电能源科学,2021, 39(7): 113-116.
    [7]
    钟伟源. 卡轴事故工况下核主泵流固耦合瞬变特性研究[D]. 镇江: 江苏大学,2018.
    [8]
    QU Z H, LI Y B, PAN J, et al. Study on pressure surge characteristics of reactor coolant pump shaft stuck accident condition based on wavelet analysis[J]. Nuclear Engineering and Design, 2022, 397: 111921. doi: 10.1016/j.nucengdes.2022.111921
    [9]
    LI D H, LI Y B, ZHANG F, et al. Study on hydraulic characteristics of reactor coolant pump shutdown transition process based on primary circuit closed system[J]. Frontiers in Energy Research, 2022, 9: 808393. doi: 10.3389/fenrg.2021.808393
    [10]
    FARHADI K. Transient behaviour of a parallel pump in nuclear research reactors[J]. Progress in Nuclear Energy, 2011, 53(2): 195-199. doi: 10.1016/j.pnucene.2010.05.001
    [11]
    FARHADI K, BOUSBIA-SALAH A, D’AURIA F. A model for the analysis of pump start-up transients in Tehran research reactor[J]. Progress in Nuclear Energy, 2007, 49(7): 499-510. doi: 10.1016/j.pnucene.2007.07.006
    [12]
    KIM S G, LEE K B, KIM K Y. Water hammer in the pump-rising pipeline system with an air chamber[J]. Journal of Hydrodynamics, 2014, 26(6): 960-964. doi: 10.1016/S1001-6058(14)60105-0
    [13]
    TANG J J, LU D G, LIANG J T, et al. Numerical simulation on asymmetrical three-dimensional thermal and hydraulic characteristics of the primary sodium pool under the pump stuck accident in CEFR[J]. Nuclear Science and Engineering, 2021, 195(5): 478-495. doi: 10.1080/00295639.2020.1834314
    [14]
    BEHROOZI A M, VAGHEFI M. Numerical investigation of water hammer due to transient in parallel pumps[J]. International Journal of Civil Engineering, 2021, 19(12): 1415-1425. doi: 10.1007/s40999-021-00640-w
    [15]
    LIU Y F, ZHOU J X, GUO Q, et al. 3-D CFD simulation of transients in multiple pump system with some pumps being stopped[J]. Journal of Hydrodynamics, 2021, 33(3): 583-592. doi: 10.1007/s42241-021-0042-8
    [16]
    黄伟,张文其,陶文铨,等. 蒸汽发生器下封头/主泵连接处流动特性试验研究[J]. 核动力工程,2004, 23(S1): 38-42.
    [17]
    余红星,黄代顺. 秦山核电二期工程设计基准事故水力学载荷分析[J]. 核动力工程,2003, 24(S2): 102-105.
    [18]
    李文姬,吕红,张洁. LOCA水力载荷分析软件HLPS的开发与验证[J]. 核动力工程,2021, 42(4): 159-165. doi: 10.13832/j.jnpe.2021.04.0159
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views (119) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return