Citation: | Jiao Jingpin, Li Zhiqiang, Sun Junjun, Wan Guorong, Li Ji, He Cunfu, Wu Bin. Nonlinear Ultrasonic Detection Method of Collinear Wave Mixing for Thermal Damage in High Temperature Pipeline[J]. Nuclear Power Engineering, 2024, 45(1): 218-224. doi: 10.13832/j.jnpe.2024.01.0218 |
[1] |
KIM S W, JEON B G, HAHM D G, et al. Failure criteria evaluation of steel pipe elbows in nuclear power plant piping systems using cumulative damage models[J]. Thin-Walled Structures, 2023, 182: 110250. doi: 10.1016/j.tws.2022.110250
|
[2] |
国家能源局. 火力发电厂金属材料选用导则: DL/T 715-2015[S]. 北京: 中国电力出版社,2015: 1.
|
[3] |
国家能源局. 压水堆核电厂常规岛金属材料选用导则: NB/T 25078—2018[S]. 北京: 中国电力出版社,2018: 1.
|
[4] |
杨健,朱文韬. 蒸汽发生器传热管诱发破裂风险评估[J]. 核动力工程,2017, 38(1): 51-55. doi: 10.13832/j.jnpe.2017.01.0051
|
[5] |
OH S, CHOI G, LEE D, et al. Analysis of eddy-current probe signals in steam generator U-bend tubes using the finite element method[J]. Applied Sciences, 2021, 11(2): 696. doi: 10.3390/app11020696
|
[6] |
ZHANG Q D, NIVERTY S, SINGARAVELU A S S, et al. Microstructure and micropore formation in a centrifugally-cast duplex stainless steel via X-ray microtomography[J]. Materials Characterization, 2019, 148: 52-62. doi: 10.1016/j.matchar.2018.12.009
|
[7] |
OH S B, KIM J, LEE J Y, et al. Analysis of pipe thickness reduction according to pH in FAC facility with in situ ultrasonic measurement real time monitoring[J]. Nuclear Engineering and Technology, 2022, 54(1): 186-192. doi: 10.1016/j.net.2021.07.048
|
[8] |
NARAYANAN M M, ARJUN V, KUMAR A. Influence of thermal expansion bend and tubesheet geometry on guided wave inspection of steam generator tubes of a fast breeder reactor[J]. Structural Health Monitoring, 2021, 20(6): 3288-3308. doi: 10.1177/1475921720983520
|
[9] |
WANG J J, WEN Z X, PEI H Q, et al. Thermal damage evaluation of nickel-based superalloys based on ultrasonic nondestructive testing[J]. Applied Acoustics, 2021, 183: 108329. doi: 10.1016/j.apacoust.2021.108329
|
[10] |
DIB G, ROY S, RAMUHALLI P, et al. In-situ fatigue monitoring procedure using nonlinear ultrasonic surface waves considering the nonlinear effects in the measurement system[J]. Nuclear Engineering and Technology, 2019, 51(3): 867-876. doi: 10.1016/j.net.2018.12.003
|
[11] |
MAEV R G, SEVIARYN F. Applications of non-linear acoustics for quality control and material characterization[J]. Journal of Applied Physics, 2022, 132(16): 161101. doi: 10.1063/5.0106143
|
[12] |
SAMPATH S, SOHN H. Cubic nonlinearity parameter measurement and material degradation detection using nonlinear ultrasonic three-wave mixing[J]. Ultrasonics, 2022, 121: 106670. doi: 10.1016/j.ultras.2021.106670
|
[13] |
KIM J, KIM J G, KONG B, et al. Applicability of nonlinear ultrasonic technique to evaluation of thermally aged CF8M cast stainless steel[J]. Nuclear Engineering and Technology, 2020, 52(3): 621-625. doi: 10.1016/j.net.2019.09.004
|
[14] |
MAO H L, ZHANG Y H, LI X X, et al. Fatigue crack detection and fatigue damage imaging using the non-collinear transverse wave mixing technique[J]. Nondestructive Testing and Evaluation, 2019, 34(1): 1-12. doi: 10.1080/10589759.2018.1533011
|
[15] |
MAO H L, ZHANG Y H, LI X X, et al. Location and length measurement of invisible fatigue crack in metal components using wave mixing methods[J]. Journal of Testing and Evaluation, 2019, 47(5): 3622-3633.
|
[16] |
LV H T, ZHANG J, JIAO J P, et al. Fatigue crack inspection and characterisation using non-collinear shear wave mixing[J]. Smart Materials and Structures, 2020, 29(5): 055024. doi: 10.1088/1361-665X/ab5486
|
[17] |
YUAN B, SHUI G S, WANG Y S. Evaluating and locating plasticity damage using collinear mixing waves[J]. Journal of Materials Engineering and Performance, 2020, 29(7): 4575-4585. doi: 10.1007/s11665-020-04971-y
|
[18] |
JU T, ACHENBACH J D, JACOBS L J, et al. Nondestructive evaluation of thermal aging of adhesive joints by using a nonlinear wave mixing technique[J]. NDT & E International, 2019, 103: 62-67.
|
[19] |
ZHANG Y H, LI X X, WU Z Y, et al. Fatigue life prediction of metallic materials based on the combined nonlinear ultrasonic parameter[J]. Journal of Materials Engineering and Performance, 2017, 26(8): 3648-3656. doi: 10.1007/s11665-017-2811-7
|
[20] |
SAMPATH S, JANG J, SOHN H. Ultrasonic Lamb wave mixing based fatigue crack detection using a deep learning model and higher-order spectral analysis[J]. International Journal of Fatigue, 2022, 163: 107028. doi: 10.1016/j.ijfatigue.2022.107028
|
[21] |
JIAO J P, LV H T, HE C F, et al. Fatigue crack evaluation using the non-collinear wave mixing technique[J]. Smart Materials and Structures, 2017, 26(6): 065005. doi: 10.1088/1361-665X/aa6c43
|