Advance Search
Volume 45 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Liu Jiusong, Liu Chengmin, Yi Jingwei, Li Yi, Li Siguang. Research on Operation Characteristics of Heat Pipe Reactor Coupled with Open-Air Brayton Cycle[J]. Nuclear Power Engineering, 2024, 45(1): 237-245. doi: 10.13832/j.jnpe.2024.01.0237
Citation: Liu Jiusong, Liu Chengmin, Yi Jingwei, Li Yi, Li Siguang. Research on Operation Characteristics of Heat Pipe Reactor Coupled with Open-Air Brayton Cycle[J]. Nuclear Power Engineering, 2024, 45(1): 237-245. doi: 10.13832/j.jnpe.2024.01.0237

Research on Operation Characteristics of Heat Pipe Reactor Coupled with Open-Air Brayton Cycle

doi: 10.13832/j.jnpe.2024.01.0237
  • Received Date: 2023-03-27
  • Rev Recd Date: 2023-11-01
  • Publish Date: 2024-02-15
  • In order to explore the operation characteristics of nuclear power conversion system with open-air Brayton cycle coupled with heat pipe reactor when the core power and load change, the system simulation model is established based on Modelica language, including the sub-models of the reactor core, the heat pipe and the Brayton cycle, and the accuracy of each model is verified. The transient simulation and analysis of loss of load (LOL) and power increment and reduction processes are carried out by using the established model. The calculation results show that in the transient process, the change of load or core power will lead to the change of rotating speed, and it is necessary to control the turbine flow through the bypass control valve to restore the rotating speed to stability. Under LOL condition, the core temperature will drop, and the reactivity feedback will increase the core power by 2.3% and the maximum fuel temperature by 1.7 K. During the reactor power increment and reduction, the peak normalized core power caused by reactivity feedback is 102.6% and 100.7% respectively. The results of this paper provide a reference for the safety analysis of the heat pipe reactor coupled with open-air Brayton cycle.

     

  • loading
  • [1]
    余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. doi: 10.13832/j.jnpe.2019.04.0001
    [2]
    MCCLURE P R, POSTON D I, DASARI V R, et al. Design of megawatt power level heat pipe reactors: LA-UR-15-28840[R]. Los Alamos, NM (United States): Los Alamos National Lab. , 2015.
    [3]
    SWARTZ M M, BYERS W A, LOJEK J, et al. Westinghouse eVinciTM heat pipe micro reactor technology development[C]//Proceedings of the 28th International Conference on Nuclear Engineering. USA: American Society of Mechanical Engineers, 2021: V001T004A018.
    [4]
    LIU X, ZHANG R, LIANG Y, et al. Core thermal-hydraulic evaluation of a heat pipe cooled nuclear reactor[J]. Annals of Nuclear Energy, 2020, 142: 107412. doi: 10.1016/j.anucene.2020.107412
    [5]
    MA Y G, TIAN C Q, YU H X, et al. Transient heat pipe failure accident analysis of a megawatt heat pipe cooled reactor[J]. Progress in Nuclear Energy, 2021, 140: 103904. doi: 10.1016/j.pnucene.2021.103904
    [6]
    郭玉川,李泽光,王侃,等. 兆瓦级热管反应堆系统初步设计及堆芯“核—热—力”耦合方法研究[J]. 中国基础科学,2021, 23(3): 51-58. doi: 10.3969/j.issn.1009-2412.2021.03.008
    [7]
    马誉高,杨小燕,刘余,等. MW级热管冷却反应堆反馈特性及启堆过程研究[J]. 原子能科学技术,2021, 55(S2): 213-220.
    [8]
    WRIGHT S A. Preliminary results of a dynamic systems model for a closed-loop Brayton cycle system coupled to a nuclear reactor[C]//Proceedings of the 1st International Energy Conversion Engineering Conference. Portsmouth, Virginia: American Institute of Aeronautics and Astronautics, 2003: 6008.
    [9]
    MOISSEYTSEV A, SIENICKI J J. Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor[J]. Nuclear Engineering and Design, 2008, 238(8): 2094-2105. doi: 10.1016/j.nucengdes.2007.11.012
    [10]
    EL-GENK M S, TOURNIER J M P, GALLO B M. Dynamic simulation of a space reactor system with closed Brayton cycle loops[J]. Journal of Propulsion and Power, 2010, 26(3): 394-406. doi: 10.2514/1.46262
    [11]
    侯捷名. 100kWe级锂冷空间快堆耦合布雷顿循环系统运行特性研究[D]. 上海: 上海交通大学,2020.
    [12]
    明杨,易经纬,方华伟,等. 直接布雷顿循环气冷反应堆系统运行特性分析[J]. 原子能科学技术,2020, 54(7): 1168-1175. doi: 10.7538/yzk.2020.youxian.0013
    [13]
    STERBENTZ J W, WERNER J E, MCKELLAR M G, et al. Special purpose nuclear reactor (5 MW) for reliable power at remote sites assessment report: INL/EXT-16-40741[R]. Idaho Falls, ID, United States: Idaho National Lab. , 2017.
    [14]
    MA Y G, ZHONG R C, YU H X, et al. Startup analyses of a megawatt heat pipe cooled reactor[J]. Progress in Nuclear Energy, 2022, 153: 104405. doi: 10.1016/j.pnucene.2022.104405
    [15]
    MA Y G, LIU J S, YU H X, et al. Coupled irradiation-thermal- mechanical analysis of the solid-state core in a heat pipe cooled reactor[J]. Nuclear Engineering and Technology, 2022, 54(6): 2094-2106. doi: 10.1016/j.net.2022.01.002
    [16]
    ZUO Z J, FAGHRI A. A network thermodynamic analysis of the heat pipe[J]. International Journal of Heat and Mass Transfer, 1998, 41(11): 1473-1484. doi: 10.1016/S0017-9310(97)00220-2
    [17]
    FERRANDI C, IORIZZO F, MAMELI M, et al. Lumped parameter model of sintered heat pipe: transient numerical analysis and validation[J]. Applied Thermal Engineering, 2013, 50(1): 1280-1290. doi: 10.1016/j.applthermaleng.2012.07.022
    [18]
    KOLLIYIL J J, YARRAMSETTY N, BALAJI C. Numerical modeling of a wicked heat pipe using lumped parameter network incorporating the marangoni effect[J]. Heat Transfer Engineering, 2021, 42(9): 787-801. doi: 10.1080/01457632.2020.1735799
    [19]
    LEMMON E W, JACOBSEN R T, PENONCELLO S G, et al. Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa[J]. Journal of Physical and Chemical Reference Data, 2000, 29(3): 331-385. doi: 10.1063/1.1285884
    [20]
    ZAVALA-RÍO A, FEMAT R, SANTIESTEBAN-COS R. An analytical study of the logarithmic mean temperature difference[J]. Revista Mexicana de Ingeniería Química, 2005, 4(3): 201-212.
    [21]
    孙中宁,范广铭,王建军. 反应堆热工水力学[M]. 哈尔滨: 哈尔滨工程大学出版社,2017: 75-79.
    [22]
    CAO Y D, FAGHRI A. Transient two-dimensional compressible analysis for high-temperature heat pipes with pulsed heat input[J]. Numerical Heat Transfer, Part A: Applications, 1991, 18(4): 483-502.
    [23]
    刘喜超,唐胜利. 基于偏最小二乘法的压气机特性曲线的拟和[J]. 汽轮机技术,2006, 48(5): 327-329. doi: 10.3969/j.issn.1001-5884.2006.05.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article Metrics

    Article views (126) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return