Citation: | Zhang Yin, Cheng Yuting, Zhou Qi, Zhu Qingfu, Xia Zhaodong, Ning Tong, Zhang Zhenyang. Research on the Source Convergence Diagnose Method of Monte Carlo Critical Calculation for Loosely Coupled System[J]. Nuclear Power Engineering, 2024, 45(2): 10-18. doi: 10.13832/j.jnpe.2024.02.0010 |
[1] |
吴晓飞,吴海成,刘振华,等. 蒙特卡罗方法计算特征值问题收敛性研究[J]. 中国原子能科学研究院年报,2006(1): 214.
|
[2] |
NAITO Y, YANG J N. The sandwich method for determining source convergence in Monte Carlo calculation[J]. Journal of Nuclear Science and Technology, 2004, 41(5): 559-568. doi: 10.1080/18811248.2004.9715519
|
[3] |
UEKI T, BROWN F B. Stationarity modeling and informatics-based diagnostics in Monte Carlo criticality calculations[J]. Nuclear Science and Engineering, 2005, 149(1): 38-50. doi: 10.13182/NSE04-15
|
[4] |
WENNER M T, HAGHIGHAT A. A combined diagnostic approach for Monte Carlo source convergence identification, international conference on mathematics[C]//American Nuclear Society. International Conference on Advances in Mathematics, Computational Methods, and Reactor Physics. Saratoga: Springs, 2009.
|
[5] |
X-5 Monte Carlo Team. MCNP – A general Monte Carlo n-particle transport code, Version 5, LA-UR-03-1987[R]. New mexico: Los Alamos National Laboratory, 2003.
|
[6] |
OMAR M R. Numerical evidence on the formulation of the Fourier fundamental mode coefficient as a source convergence indicator[J]. Nuclear Engineering and Design, 2021, 378: 111162. doi: 10.1016/j.nucengdes.2021.111162
|
[7] |
OMAR M R, KARIM J A. Fission source stationarity diagnostics using the Fourier fundamental mode coefficient[J]. Progress in Nuclear Energy, 2022, 146: 104164. doi: 10.1016/j.pnucene.2022.104164
|
[8] |
BLOMQUIST R N, ARMISHAW M, HANLON D, et al. Source convergence in criticality safety analyses, Phase I: results for four test problems[Z]. OECD/NEA, 2006.
|