Advance Search
Volume 45 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
Liu Jiabao, Cao Xiaxin, Yang Peixun. Experimental Study on Heat Transfer Characteristics of Pure Steam with Incomplete Condensation in Vertical Tube[J]. Nuclear Power Engineering, 2024, 45(2): 72-81. doi: 10.13832/j.jnpe.2024.02.0072
Citation: Liu Jiabao, Cao Xiaxin, Yang Peixun. Experimental Study on Heat Transfer Characteristics of Pure Steam with Incomplete Condensation in Vertical Tube[J]. Nuclear Power Engineering, 2024, 45(2): 72-81. doi: 10.13832/j.jnpe.2024.02.0072

Experimental Study on Heat Transfer Characteristics of Pure Steam with Incomplete Condensation in Vertical Tube

doi: 10.13832/j.jnpe.2024.02.0072
  • Received Date: 2023-06-13
  • Rev Recd Date: 2023-07-15
  • Publish Date: 2024-04-12
  • In order to study the heat transfer characteristics of pure steam with incomplete condensation in a vertical tube, an experiment was carried out using a heat exchange tube with an inner diameter of 25 mm, with an inlet pressure of 0.1~0.3 MPa and a steam mass flux of 12~70 kg/(m2·s). The effects of inlet pressure, mass flux and mass quality on the average and local condensation heat transfer coefficients in the tube were investigated. The liquid film flow pattern in the condensation process was identified, and the effects of liquid film turbulence and droplet entrainment on the condensation heat transfer in the tube were analyzed. It is shown that the condensation heat transfer coefficient increases with the increase of mass flux and mass quality. However, the condensation heat transfer coefficient of vertical tube decreases with the increase of inlet pressure. The liquid film flow pattern in the experiment is mainly in the transition flow region, and the occurrence of droplet entrainment increases the local condensation heat transfer coefficient. Four annular flow condensation heat transfer equations are compared. The results show that the basic deviation of Shah's empirical equation is within ±30%, and the mean absolute deviation (MAD) was 18.91%. An empirical correlation based on the experimental data is developed, and the basic deviation between the calculated value and the experimental value is within ±10%.

     

  • loading
  • [1]
    LEE K Y, KIM M H. Effect of an interfacial shear stress on steam condensation in the presence of a noncondensable gas in a vertical tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(21-22): 5333-5343. doi: 10.1016/j.ijheatmasstransfer.2008.03.017
    [2]
    RASSAME S, HIBIKI T, ISHII M. ESBWR passive safety system performance under loss of coolant accidents[J]. Progress in Nuclear Energy, 2017, 96: 1-17. doi: 10.1016/j.pnucene.2016.12.005
    [3]
    SIDDIQUE M, GOLAY M W, KAZIMI M S. Theoretical modeling of forced convection condensation of steam in a vertical tube in the presence of a noncondensable gas[J]. Nuclear Technology, 1994, 106(2): 202-215. doi: 10.13182/NT94-A34976
    [4]
    KIM D E, YANG K H, HWANG K W, et al. Pure steam condensation model with laminar film in a vertical tube[J]. International Journal of Multiphase Flow, 2011, 37(8): 941-946. doi: 10.1016/j.ijmultiphaseflow.2011.04.006
    [5]
    WANG J S, LI Y, YAN J J, et al. Condensation heat transfer of steam on vertical micro-tubes[J]. Applied Thermal Engineering, 2015, 88: 185-191. doi: 10.1016/j.applthermaleng.2014.08.058
    [6]
    DALKILIC A S, YILDIZ S, WONGWISES S. Experimental investigation of convective heat transfer coefficient during downward laminar flow condensation of R134a in a vertical smooth tube[J]. International Journal of Heat and Mass Transfer, 2009, 52(1-2): 142-150. doi: 10.1016/j.ijheatmasstransfer.2008.05.035
    [7]
    DALKILIC A S, KUNDU B, WONGWISES S. An experimental investigation of the reynolds analogy and its modifications applied to annular condensation laminar flow of R134a in a vertical tube[J]. Arabian Journal for Science and Engineering, 2013, 38(6): 1493-1507. doi: 10.1007/s13369-013-0595-0
    [8]
    KUHN S Z. Investigation of heat transfer from condensing steam-gas mixtures and turbulent films flowing downward inside a vertical tube[D]. Berkeley: University of California, 1995.
    [9]
    OH S, REVANKAR S T. Effect of noncondensable gas in a vertical tube condenser[J]. Nuclear Engineering and Design, 2005, 235(16): 1699-1712. doi: 10.1016/j.nucengdes.2005.01.010
    [10]
    LEE K Y, KIM M H. Experimental and empirical study of steam condensation heat transfer with a noncondensable gas in a small-diameter vertical tube[J]. Nuclear Engineering and Design, 2008, 238(1): 207-216. doi: 10.1016/j.nucengdes.2007.07.001
    [11]
    AL-SHAMMARI S B, WEBB D R, HEGGS P. Condensation of steam with and without the presence of non-condensable gases in a vertical tube[J]. Desalination, 2004, 169(2): 151-160. doi: 10.1016/j.desal.2003.11.006
    [12]
    DORSCH R G, GOODYKOONTZ J H. Local heat-transfer coefficients and static pressures for condensation of high-velocity steam within a tube[R]. Washington: NASA, 1967.
    [13]
    KIM S J, NO H C. Turbulent film condensation of high pressure steam in a vertical tube[J]. International Journal of Heat and Mass Transfer, 2000, 43(21): 4031-4042. doi: 10.1016/S0017-9310(00)00015-6
    [14]
    REVANKAR S T, OH S. Complete condensation in a vertical tube passive condenser[J]. Transactions of the American Nuclear Society, 2004, 91: 883-884.
    [15]
    NUßELT W. Die oberflächenkondensation des wasserdampfes[J]. VDI-Zeitschriften, 1916, 60: 541-569.
    [16]
    杨培勋,曹夏昕,刘佳宝,等. 低质量流速下倾斜管内纯蒸汽冷凝换热特性研究[J]. 哈尔滨工程大学学报,2022, 43(7): 986-992.
    [17]
    LIU J, CAO X, YANG P. Experimental verification and improvement of heat transfer tube local wall temperature measurement method[J]. Nuclear Engineering and Technology, 2023, 55(12): 4317-4328.
    [18]
    CHEN S L, GERNER F M, TIEN C L. General film condensation correlations[J]. Experimental Heat Transfer, 1987, 1(2): 93-107. doi: 10.1080/08916158708946334
    [19]
    AZZOLIN M, BORTOLIN S, DEL COL D. Convective condensation at low mass flux: Effect of turbulence and tube orientation on the heat transfer[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118646. doi: 10.1016/j.ijheatmasstransfer.2019.118646
    [20]
    CIONCOLINI A, DEL COL D, THOME J R. An indirect criterion for the laminar to turbulent flow transition in shear-driven annular liquid films[J]. International Journal of Multiphase Flow, 2015, 75: 26-38. doi: 10.1016/j.ijmultiphaseflow.2015.05.002
    [21]
    CIONCOLINI A, THOME J R. Entrained liquid fraction prediction in adiabatic and evaporating annular two-phase flow[J]. Nuclear Engineering and Design, 2012, 243: 200-213. doi: 10.1016/j.nucengdes.2011.11.014
    [22]
    GOGONIN I I. Heat transfer in condensation of vapor moving inside vertical tubes[J]. Journal of Engineering Physics and Thermophysics, 2004, 77(2): 454-470. doi: 10.1023/B:JOEP.0000028528.91696.12
    [23]
    SHAH M M. An improved and extended general correlation for heat transfer during condensation in plain tubes[J]. HVAC& R Research, 2009, 15(5): 889-913.
    [24]
    DOBSON M K, CHATO J C. Condensation in smooth horizontal tubes[J]. Journal of Heat Transfer, 1998, 120(1): 193-213. doi: 10.1115/1.2830043
    [25]
    CAVALLINI A, DEL COL D, DORETTI L, et al. Condensation in horizontal smooth tubes: a new heat transfer model for heat exchanger design[J]. Heat Transfer Engineering, 2006, 27(8): 31-38. doi: 10.1080/01457630600793970
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (107) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return