Advance Search
Volume 45 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
Huang Zhe, Liang Tiebo, Yang Wen, Lu Chuan, Li Yang, He Zhonghai, Shen Xin. Analysis of Steady and Transient Characteristics of Once-through Steam Generator for Lead Bismuth Fast Reactor[J]. Nuclear Power Engineering, 2024, 45(2): 103-109. doi: 10.13832/j.jnpe.2024.02.0103
Citation: Huang Zhe, Liang Tiebo, Yang Wen, Lu Chuan, Li Yang, He Zhonghai, Shen Xin. Analysis of Steady and Transient Characteristics of Once-through Steam Generator for Lead Bismuth Fast Reactor[J]. Nuclear Power Engineering, 2024, 45(2): 103-109. doi: 10.13832/j.jnpe.2024.02.0103

Analysis of Steady and Transient Characteristics of Once-through Steam Generator for Lead Bismuth Fast Reactor

doi: 10.13832/j.jnpe.2024.02.0103
  • Received Date: 2023-05-15
  • Rev Recd Date: 2023-11-09
  • Publish Date: 2024-04-12
  • The safe and stable operation of lead bismuth fast reactor is closely related to the heat dissipation performance between the primary and secondary sides of the heat exchanger. In this study, the steady-state and transient coupled distribution parameter model of once-through steam generator (OTSG) based on lead bismuth fast reactor is established. The distribution difference of thermal and hydraulic characteristics in OTSG under different load conditions is analyzed and compared, and the influence of primary enthalpy and flow disturbance of lead bismuth fast reactor on the dynamic heat dissipation performance of heat exchanger is further revealed. The steady-state results show that the temperature drop on the primary side of the lead bismuth fast reactor was mainly concentrated in the subcooled boiling and nucleate boiling regions, and the decrease in the secondary side load can cause the temperature jump on the tube wall. The dynamic results show that the primary side inlet enthalpy only decreases by 5% under design conditions, which may lead to the lead bismuth reactor cycle entering accident conditions after 90 seconds. The relevant results provide valuable suggestions for the study of OTSG flow and heat transfer characteristics and structural design optimization of the lead bismuth fast reactor.

     

  • loading
  • [1]
    OECD Nuclear Energy Agency for the Generation IV International Forum. Technology roadmap update for generation IV nuclear energy systems: gif-tru2014[R]. Paris: OECD, 2014.
    [2]
    赵孝,白宇飞,张震,等. 直流蒸汽发生器稳态与瞬态特性数值模拟[J]. 核动力工程,2020, 41(6): 8-13. doi: 10.13832/j.jnpe.2020.06.0008
    [3]
    朱景艳,张志俭,郭赟. 套管式直流蒸汽发生器动态实时仿真研究[J]. 原子能科学技术,2011, 45(8): 937-942.
    [4]
    ZHANG G L, ZHANG Y, YANG Y L, et al. Dynamic heat transfer performance study of steam generator based on distributed parameter method[J]. Annals of Nuclear Energy, 2014, 63: 658-664. doi: 10.1016/j.anucene.2013.09.005
    [5]
    CIONCOLINI A, SANTINI L. Two-phase pressure drop prediction in helically coiled steam generators for nuclear power applications[J]. International Journal of Heat and Mass Transfer, 2016, 100: 825-834. doi: 10.1016/j.ijheatmasstransfer.2016.05.027
    [6]
    OSAKABE M. Thermal-hydraulic study of integrated steam generator in PWR[J]. Journal of Nuclear Science and Technology, 1989, 26(2): 286-294. doi: 10.1080/18811248.1989.9734304
    [7]
    TZANOS C P. A movable boundary model for once-through steam generator analysis[J]. Nuclear Technology, 1988, 82(1): 5-17. doi: 10.13182/NT88-A34113
    [8]
    干依燃. 基于均相流模型的直流蒸汽发生器换热性能仿真[D]. 哈尔滨: 哈尔滨工程大学,2016.
    [9]
    杨宇鹏,王成龙,张大林,等. 液态金属螺旋管式直流蒸汽发生器数值模拟研究[J]. 原子能科学技术,2021, 55(7): 1288-1295. doi: 10.7538/yzk.2020.youxian.0514
    [10]
    YANG Y P, LI Y, WANG C L, et al. Parametric sensitivity analysis of liquid metal helical coil once-through tube steam generator[J]. Nuclear Engineering and Design, 2021, 383: 111427. doi: 10.1016/j.nucengdes.2021.111427
    [11]
    KROMER D, CHANDRASEKARAN S, GARIMELLA S. Microchannel steam generators for design for integral inherently safe light water reactors[J]. Nuclear Engineering and Design, 2020, 370: 110867. doi: 10.1016/j.nucengdes.2020.110867
    [12]
    丁雪友. 基于两流体架构的铅铋快堆螺旋管直流蒸汽发生器流动与传热模型研究[D]. 重庆: 重庆大学,2021.
    [13]
    CHENG X, BATTA A, CHEN H Y, et al. Turbulent heat transfer to heavy liquid metals in circular tubes[C]//ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. Charlotte: ASME, 2004: 115-125.
    [14]
    CONCETTA F. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies: 2015 edition[M].Paris, France: OECD, 2015: 28-132.
    [15]
    陶文铨. 传热学[M]. 第五版. 北京: 高等教育出版社,2019: 230-238.
    [16]
    ZAMBRANA J, LEO T J, PEREZ-DEL-NOTARIO P. Vertical tube length calculation based on available heat transfer coefficient expressions for the subcooled flow boiling region[J]. Applied Thermal Engineering, 2008, 28(5-6): 499-513. doi: 10.1016/j.applthermaleng.2007.05.003
    [17]
    赵兆颐,朱瑞安. 反应堆热工流体力学[M]. 北京: 清华大学出版社,1992.
    [18]
    许余,皇甫泽玉,胥建群,等. 直流蒸汽发生器建模与仿真研究[J]. 核动力工程,2021, 42(1): 154-160. doi: 10.13832/j.jnpe.2021.01.0154
    [19]
    吴鸽平,吴埃敏,郭贇,等. 环形窄缝通道内流动沸腾干涸点的研究[J]. 西安交通大学学报,2004, 38(7): 686-689,697. doi: 10.3321/j.issn:0253-987X.2004.07.007
    [20]
    WANG L Z, WU G W, WANG J, et al. Numerical investigation of the core outlet temperature fluctuation for the lead-based reactor[J]. Annals of Nuclear Energy, 2018, 117: 194-201. doi: 10.1016/j.anucene.2018.03.020
    [21]
    杨若楠. 池式铅基堆自然循环特性的数值模拟研究[D]. 兰州: 中国科学院大学(中国科学院近代物理研究所),2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (146) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return