Citation: | Jiang Dianqiang, Zhang Dalin, Chen Kailong, Tian Wenxi, Qiu Suizheng, Su Guanghui. Numerical Study on Laminar Mixed Convective Heat Transfer of Molten Salt along Helical Cruciform Single-Rod[J]. Nuclear Power Engineering, 2024, 45(3): 76-84. doi: 10.13832/j.jnpe.2024.03.0076 |
[1] |
ZHANG D, LIU L, LIU M, et al. Review of conceptual design and fundamental research of molten salt reactors in China[J]. International Journal of Energy Research, 2018, 42(5): 1834-1848. doi: 10.1002/er.3979
|
[2] |
JIANG D, ZHANG D, LI X, et al. Fluoride-salt-cooled high-temperature reactors: Review of historical milestones, research status, challenges, and outlook[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112345. doi: 10.1016/j.rser.2022.112345
|
[3] |
张大林,秦浩,王式保,等. 固有安全一体化小型氟盐冷却高温堆初步概念设计研究[J]. 中国基础科学,2021, 23(4): 15-20. doi: 10.3969/j.issn.1009-2412.2021.04.003
|
[4] |
MALONE J, TOTEMEIER A, SHAPIRO N, et al. Lightbridge Corporation’s Advanced Metallic Fuel for Light Water Reactors[J]. Nuclear Technology, 2012, 180(3): 437-442. doi: 10.13182/NT12-A15354
|
[5] |
FENG D. Innovative Fuel Designs for High Power Density Pressurized Water Reactor[D]. Massachusetts: Massachusetts Institute of Technology, 2005.
|
[6] |
MOHANTA L, CHEUNG F B, BAJOREK S M, et al. Experimental study of laminar mixed convection in a rod bundle with mixing vane spacer grids[J]. Nuclear Engineering and Design, 2017, 312: 99-105. doi: 10.1016/j.nucengdes.2016.07.023
|
[7] |
SUNG-HO K, EL-GENK M S. Heat transfer experiments for low flow of water in rod bundles[J]. International Journal of Heat and Mass Transfer, 1989, 32(7): 1321-1336. doi: 10.1016/0017-9310(89)90032-X
|
[8] |
CONBOY T M. Assessment of Helical-Cruciform Fuel Rods for High Power Density LWRs[D]. Massachusetts: Massachusetts Institute of Technology, 2010.
|
[9] |
张琦,顾汉洋,肖瑶,等. 5x5螺旋十字型棒束组件阻力与交混特性实验研究[J]. 原子能科学技术,2021, 55(6): 1060-1066. doi: 10.7538/yzk.2020.youxian.0436
|
[10] |
ZHANG Q, LIU L, XIAO Y, et al. Experimental study on the transverse mixing of 5 × 5 helical cruciform fuel assembly by wire mesh sensor[J]. Annals of Nuclear Energy, 2021, 164: 108582. doi: 10.1016/j.anucene.2021.108582
|
[11] |
CONG T, ZHANG R, WANG B, et al. Single-phase flow in helical cruciform fuel assembly with conjugate heat transfer[J]. Progress in Nuclear Energy, 2022, 147: 104199. doi: 10.1016/j.pnucene.2022.104199
|
[12] |
JIANG D, ZHANG D, TIAN W, et al. Numerical study on transverse mixing characteristics of flow sweeping in helical cruciform rod bundle[J]. Applied Thermal Engineering, 2022: 119935.
|
[13] |
JIANG D, DALIN ZHANG, WENXI TIAN, et al. Experimental study on flow and heat transfer of medium-Prandtl-number fluid along a hexagonal helical cruciform seven-rods[J]. International Journal of Heat and Mass Transfer, 2024, 224: 1-14.
|
[14] |
JIANG D, ZHANG D, CHEN K, et al. Experimental Study on Flow and Heat Transfer of High Prandtl Number Fluid along Helical Cruciform Single Rod[C]//International Conference on Nuclear Engineering, Proceedings. Kyoto: American Society of Mechanical Engineers (ASME), 2023.
|
[15] |
ZWEIBAUM N. Experimental Validation of Passive Safety System Models: Application to Design and Optimization of Fluoride-Salt-Cooled, High-Temperature Reactors[D]. California: University of California, Berkeley, 2015.
|
[16] |
JACKSON J D, COTTON M A, AXCELL B P. Studies of mixed convection in vertical tubes[J]. International Journal of Heat and Fluid Flow, 1989, 10(1): 2-15. doi: 10.1016/0142-727X(89)90049-0
|
[17] |
LIU D, GU H. Mixed convection heat transfer in a 5 × 5 rod bundles[J]. International Journal of Heat and Mass Transfer, 2017, 113: 914-921. doi: 10.1016/j.ijheatmasstransfer.2017.05.113
|
[18] |
LI J, XIAO Y, GU H, et al. Development of a correlation for mixed convection heat transfer in rod bundles[J]. Annals of Nuclear Energy, 2021, 155: 108151. doi: 10.1016/j.anucene.2021.108151
|
[19] |
CHURCHILL S W. A comprehensive correlating equation for laminar, assisting, forced and free convection[J]. AIChE Journal, 1977, 23(1): 10-16. doi: 10.1002/aic.690230103
|
[20] |
EL-GENK M S, SU B, GUO Z. Experimental studies of forced, combined and natural convection of water in vertical nine-rod bundles with a square lattice[J]. International Journal of Heat and Mass Transfer, 1993, 36(9): 2359-2374. doi: 10.1016/S0017-9310(05)80120-6
|
[21] |
OLIVER D R. The effect of natural convection on viscous-flow heat transfer in horizontal tubes[J]. Chemical Engineering Science, 1962, 17(5): 335-350. doi: 10.1016/0009-2509(62)80035-9
|
[22] |
ZHANG S. Mixed convective heat transfer of medium-Prandtl-number fluids in horizontal circular tubes[J]. International Journal of Heat and Mass Transfer, 2022, 190: 122740. doi: 10.1016/j.ijheatmasstransfer.2022.122740
|
[23] |
A. R. BROWN, M. A. THOMAS. Combined Free and Forced Convection Heat Transfer for Laminar Flow in Horizontal Tube[J] Journal Mechanical Engineering Science, 7(4): 440-448.
|
[24] |
LU D, ZHANG Y, FU X, et al. Experimental investigation on natural convection heat transfer characteristics of C-shape heating rods bundle used in PRHR HX[J]. Annals of Nuclear Energy, 2016, 98: 226-238. doi: 10.1016/j.anucene.2016.08.009
|
[25] |
LIU W, PENG S, JIANG G, et al. Development and assessment of a new rod-bundle CHF correlation for China fuel assemblies[J]. Annals of Nuclear Energy, 2020, 138: 107175. doi: 10.1016/j.anucene.2019.107175
|
[26] |
杨世铭,陶文铨. 传热学(第四版)[M]. 北京: 高等教育出版社,2006: 273-274.
|
[27] |
STEVENS R J A M, LOHSE D, VERZICCO R. Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection[J]. Journal of Fluid Mechanics, 2011, 688: 31-43. doi: 10.1017/jfm.2011.354
|
[28] |
MERZARI E, FISCHER P, NINOKATA H. Numerical Simulation of the Flow in a Toroidal Thermosiphon[C]//ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D. Hamamatsu, Japan: ASMEDC, 2011: 1549-1560.
|
[29] |
ROMATOSKI R R, HU L W. Fluoride salt coolant properties for nuclear reactor applications: A review[J]. Annals of Nuclear Energy, 2017, 109: 635-647. doi: 10.1016/j.anucene.2017.05.036
|
[30] |
秋穗正,张大林,王成龙. 熔盐堆[M]. 西安: 西安交通大学出版社,2019: 48.
|
[31] |
LIU L, ZHANG D, LI L, et al. Experimental investigation of flow and convective heat transfer on a high-Prandtl-number fluid through the nuclear reactor pebble bed core[J]. Applied Thermal Engineering, 2018, 145: 48-57. doi: 10.1016/j.applthermaleng.2018.09.017
|
[32] |
OSBORNE D G, INCROPERA F P. Experimental study of mixed convection heat transfer for transitional and turbulent flow between horizontal, parallel plates[J]. International Journal of Heat and Mass Transfer, 1985, 28(7): 1337-1344. doi: 10.1016/0017-9310(85)90164-4
|
[33] |
LI W, FENG Z Z. Laminar mixed convection of large-Prandtl-number in-tube nanofluid flow, Part II: Correlations[J]. International Journal of Heat and Mass Transfer, 2013, 65: 928-935. doi: 10.1016/j.ijheatmasstransfer.2013.07.006
|
[34] |
SHANNON R L, DEPEW C A. Forced Laminar Flow Convection in a Horizontal Tube With Variable Viscosity and Free-Convection Effects[J]. Journal of Heat Transfer, 1969, 91(2): 251-258. doi: 10.1115/1.3580137
|