Citation: | Liu Zhen, Zhang Xiaohong, Qiao Yingjie, He Kun, Du Peinan, Zhang Ruiqian, Du Shiyu. Study on Weight-gain Model of FeCrAl Alloy by Steam Oxidation at Medium and High Temperature[J]. Nuclear Power Engineering, 2024, 45(3): 139-145. doi: 10.13832/j.jnpe.2024.03.0139 |
[1] |
ALLEN T, BUSBY J, MEYER M, et al. Materials challenges for nuclear systems[J]. Materials Today, 2010, 13(12): 14-23. doi: 10.1016/S1369-7021(10)70220-0
|
[2] |
AZEVEDO C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Engineering Failure Analysis, 2011, 18(8): 1943-1962. doi: 10.1016/j.engfailanal.2011.06.010
|
[3] |
TERRANI K A, ZINKLE S J, SNEAD L L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J]. Journal of Nuclear Materials, 2014, 448(1-3): 420-435. doi: 10.1016/j.jnucmat.2013.06.041
|
[4] |
ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs: a perspective[J]. Journal of Nuclear Materials, 2014, 448(1-3): 374-379. doi: 10.1016/j.jnucmat.2013.12.005
|
[5] |
TERRANI K A. Accident tolerant fuel cladding development: promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30. doi: 10.1016/j.jnucmat.2017.12.043
|
[6] |
WU X, KOZLOWSKI T, HALES J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions[J]. Annals of Nuclear Energy, 2015, 85: 763-775. doi: 10.1016/j.anucene.2015.06.032
|
[7] |
UNOCIC K A, HOELZER D T, PINT B A. Microstructure and environmental resistance of low Cr ODS FeCrAl[J]. Materials at High Temperatures, 2015, 32(1-2): 123-132. doi: 10.1179/0960340914Z.00000000088
|
[8] |
JÖNSSON B, LU Q, CHANDRASEKARAN D, et al. Oxidation and creep limited lifetime of kanthal APMT®, a dispersion strengthened FeCrAlMo alloy designed for strength and oxidation resistance at high temperatures[J]. Oxidation of Metals, 2013, 79(1-2): 29-39. doi: 10.1007/s11085-012-9324-4
|
[9] |
PINT B A, TERRANI K A, YAMAMOTO Y, et al. Material selection for accident tolerant fuel cladding[J]. Metallurgical and Materials Transactions E, 2015, 2(3): 190-196. doi: 10.1007/s40553-015-0056-7
|
[10] |
TERENTYEV D, HAFEZ HAGHIGHAT S M, SCHÄUBLIN R. Strengthening due to Cr-rich precipitates in Fe–Cr alloys: effect of temperature and precipitate composition[J]. Journal of Applied Physics, 2010, 107(6): 061806. doi: 10.1063/1.3340522
|
[11] |
FIELD K G, HU X X, LITTRELL K C, et al. Radiation tolerance of neutron-irradiated model Fe–Cr–Al alloys[J]. Journal of Nuclear Materials, 2015, 465: 746-755. doi: 10.1016/j.jnucmat.2015.06.023
|
[12] |
YAMAMOTO Y, PINT B A, TERRANI K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J]. Journal of Nuclear Materials, 2015, 467: 703-716. doi: 10.1016/j.jnucmat.2015.10.019
|
[13] |
SUN Z Q, BEI H B, YAMAMOTO Y. Microstructural control of FeCrAl alloys using Mo and Nb additions[J]. Materials Characterization, 2017, 132: 126-131. doi: 10.1016/j.matchar.2017.08.008
|
[14] |
SUN Z Q, YAMAMOTO Y. Processability evaluation of a Mo-containing FeCrAl alloy for seamless thin-wall tube fabrication[J]. Materials Science and Engineering:A, 2017, 700: 554-561. doi: 10.1016/j.msea.2017.06.036
|
[15] |
BADINI C, LAURELLA F. Oxidation of FeCrAl alloy: influence of temperature and atmosphere on scale growth rate and mechanism[J]. Surface and Coatings Technology, 2001, 135(2-3): 291-298. doi: 10.1016/S0257-8972(00)00989-0
|
[16] |
WANG P, QI W, YANG K, et al. Systematic investigation of the oxidation behavior of Fe-Cr-Al cladding alloys in high-temperature steam[J]. Corrosion Science, 2022, 207: 110595. doi: 10.1016/j.corsci.2022.110595
|
[17] |
PINT B A, DRYEPONDT S, UNOCIC K A, et al. Development of ODS FeCrAl for compatibility in fusion and fission energy applications[J]. JOM, 2014, 66(12): 2458-2466. doi: 10.1007/s11837-014-1200-z
|
[18] |
CHENG T, KEISER J R, BRADY M P, et al. Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure[J]. Journal of Nuclear Materials, 2012, 427(1-3): 396-400. doi: 10.1016/j.jnucmat.2012.05.007
|