Advance Search
Volume 45 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
Qian Yalan, Lin Qian, Yang Zijiang, Chen Kang, Zhan Wenhui, Tang Chuntao, Yang Bo. Research on Characteristics of Secondary Side Passive Residual Heat Removal System of Lead-bismuth Reactor under SBO[J]. Nuclear Power Engineering, 2024, 45(4): 32-37. doi: 10.13832/j.jnpe.2024.04.0032
Citation: Qian Yalan, Lin Qian, Yang Zijiang, Chen Kang, Zhan Wenhui, Tang Chuntao, Yang Bo. Research on Characteristics of Secondary Side Passive Residual Heat Removal System of Lead-bismuth Reactor under SBO[J]. Nuclear Power Engineering, 2024, 45(4): 32-37. doi: 10.13832/j.jnpe.2024.04.0032

Research on Characteristics of Secondary Side Passive Residual Heat Removal System of Lead-bismuth Reactor under SBO

doi: 10.13832/j.jnpe.2024.04.0032
  • Received Date: 2023-10-17
  • Rev Recd Date: 2024-01-27
  • Publish Date: 2024-08-12
  • The secondary side passive residual heat removal (PRHRS) of Russian SVBR-100 lead-bismuth reactor was chosen as the research object, and the RELAP5/MOD4.0 code was used to model and evaluate the heat removal capacity and parameter sensitivity of PRHRS under station blackout (SBO) accident. The results show that the key parameter of the peak cladding temperature is 816.35 K during the whole SBO accident, which is within the safety limit. PRHRS can timely remove the residual heat. By increasing the heat exchange area of the built-in condensing heat exchanger in PRHRS water tank, the residual heat removal capacity of PRHRS can be enhanced. The safety analysis model and evaluation method for secondary side PRHRS established in this study can provide technical reference for the design and application of PRHRS of lead-cooled reactor in China.

     

  • loading
  • [1]
    吴宜灿,王明煌,黄群英,等. 铅基反应堆研究现状与发展前景[J]. 核科学与工程,2015, 35(2): 213-221.
    [2]
    刘玉康,文青龙,乔鹏瑞,等. 全厂断电事故工况下小型铅铋快堆余热排出能力评价[J]. 原子能科学技术,2021, 55(11): 2028-2035.
    [3]
    陈学锋. 核电厂全厂断电事故分析[J]. 中国核电,2011, 4(1): 46-51.
    [4]
    盛美玲,金鸣,柏云清,等. 中国铅合金冷却研究堆事故余热排出系统概念设计与分析[J]. 核科学与工程,2014, 34(1): 91-96.
    [5]
    夏少雄,王家群,潘晓磊,等. 中国铅基研究堆非能动余热排出系统可靠性分析[J]. 核技术,2015, 38(2): 020605.
    [6]
    International Atomic Energy Agency. Advances in small modular reactor technology developments: 20-02510E[R]. Vienna: IAEA, 2020.
    [7]
    吴国伟. 铅基堆非能动余热排出系统的设计研究[D]. 合肥: 中国科学技术大学,2017.
    [8]
    European Seventh Framework Programme. Conceptual design of the DHR system of the ETDR (ALFRED): FP7-249668[R]. European Union, 2012.
    [9]
    GOLOVIN A O, SIVAK Z V, LEONCHUK M P. Analysis of safety aspects of the svbr-75/100 power installation as applied to regional nuclear cogeneration plant[J]. Dysnai, 2003: 101.
    [10]
    PETROCHENKO V, TOSHINSKY G, KOMLEV O. SVBR-100 nuclear technology as a possible option for developing countries[J]. World Journal of Nuclear Science and Technology, 2015, 5(3): 221-232. doi: 10.4236/wjnst.2015.53022
    [11]
    International Atomic Energy Agency. Liquid metal coolants for fast reactors cooled by sodium, lead, and lead-bismuth eutectic: NP-T-1.6[R]. Vienna: IAEA, 2012.
    [12]
    MELONI P, WAGNER A D, CASTIGLIA F, et al. Investigation of Relap capability to simulate the LBE cooling system thermal-hydraulic[J]. Centro Ricerche Bologna, 2004, 1: 637-647.
    [13]
    薛冰,刘晓晶,何兆忠. 10MW固态燃料熔盐堆热阱丧失事故安全分析[J]. 核科学与工程,2019, 39(6): 966-974.
    [14]
    卢永刚. 铅铋冷却快堆主循环泵优化设计与可靠性分析[D]. 镇江: 江苏大学,2019.
    [15]
    石康丽. 铅冷快堆始发事件及瞬态安全特性初步研究[D]. 合肥: 中国科学技术大学,2017.
    [16]
    TOSHINSKII G. Lead-bismuth cooled fast reactors[M]. Riga: LAMBERT Academic Publishing, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (86) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return