Citation: | Du Lipeng, Song Shangdian, Cai Weihua, Jiang Zeping, Cheng Qi, Zhang Wenchao, Jin Guangyuan. Numerical Study on Characteristics of Subcooled Flow Boiling with the Coupling Effect of 3×3 Petal-Shaped Fuel Rods and Coolant[J]. Nuclear Power Engineering, 2024, 45(4): 87-95. doi: 10.13832/j.jnpe.2024.04.0087 |
[1] |
SHIRVAN K, KAZIMI M S. Three dimensional considerations in thermal-hydraulics of helical cruciform fuel rods for LWR power uprates[J]. Nuclear Engineering and Design, 2014, 270: 259-272. doi: 10.1016/j.nucengdes.2014.01.015
|
[2] |
CONBOY T M, MCKRELL T J, KAZIMI M S. Experimental investigation of hydraulics and lateral mixing for helical-cruciform fuel rod assemblies[J]. Nuclear Technology, 2013, 182(3): 259-273. doi: 10.13182/NT12-58
|
[3] |
CONBOY T M, MCKRELL T J, KAZIMI M S. Evaluation of helical-cruciform fuel rod assemblies for high-power-density LWRs[J]. Nuclear Technology, 2014, 188(2): 139-153. doi: 10.13182/NT13-104
|
[4] |
张琦,顾汉洋,肖瑶,等. 5×5螺旋十字型棒束组件阻力与交混特性实验研究[J]. 原子能科学技术,2021, 55(6): 1060-1066.
|
[5] |
邹旭毛,高勇,朱俊志,等. 高性能燃料棒束通道内的流动和换热特性研究[C]//第十六届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2019年学术年会论文集. 惠州: 中国科学院近代物理研究所,2019.
|
[6] |
XIAO Y, FU J S, ZHANG Q, et al. Development of a flow sweeping mixing model for helical fuel rod bundles[J]. Annals of Nuclear Energy, 2021, 160: 108428. doi: 10.1016/j.anucene.2021.108428
|
[7] |
FANG Y L, QIN H, WANG C L, et al. Numerical investigation on thermohydraulic performance of high temperature hydrogen in twisted rod channels[J]. Annals of Nuclear Energy, 2021, 161: 108434. doi: 10.1016/j.anucene.2021.108434
|
[8] |
刘畅. 螺旋型燃料棒束内流动与换热特性数值模拟[D]. 哈尔滨: 哈尔滨工业大学,2020.
|
[9] |
蔡伟华,韦徵圣,李石磊,等. 5×5花瓣形燃料棒束组件内单相流动与换热特性数值模拟研究[J]. 原子能科学技术,2021, 55(11): 1939-1949. doi: 10.7538/yzk.2021.youxian.0593
|
[10] |
SHIRVAN K. Numerical investigation of the boiling crisis for helical cruciform-shaped rods at high pressures[J]. International Journal of Multiphase Flow, 2016, 83: 51-61. doi: 10.1016/j.ijmultiphaseflow.2016.03.014
|
[11] |
CONG T L, XIAO Y, WANG B C, et al. Numerical study on the boiling heat transfer and critical heat flux in a simplified fuel assembly with 2×2 helical cruciform rods[J]. Progress in Nuclear Energy, 2022, 145: 104111. doi: 10.1016/j.pnucene.2021.104111
|
[12] |
ISHII M, ZUBER N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J]. AIChE Journal, 1979, 25(5): 843-855. doi: 10.1002/aic.690250513
|
[13] |
TOMIYAMA A, TAMAI H, ZUN I, et al. Transverse migration of single bubbles in simple shear flows[J]. Chemical Engineering Science, 2002, 57(11): 1849-1858. doi: 10.1016/S0009-2509(02)00085-4
|
[14] |
ANTAL S P, LAHEY JR R T, FLAHERTY J E. Analysis of phase distribution in fully developed laminar bubbly two-phase flow[J]. International Journal of Multiphase Flow, 1991, 17(5): 635-652. doi: 10.1016/0301-9322(91)90029-3
|
[15] |
DE BERTODANO M L. Turbulent bubbly two-phase flow in a triangular duct[D]. Troy: Rensselaer Polytechnic Institute, 1992.
|
[16] |
SATO Y, SEKOGUCHI K. Liquid velocity distribution in two-phase bubble flow[J]. International Journal of Multiphase Flow, 1975, 2(1): 79-95. doi: 10.1016/0301-9322(75)90030-0
|
[17] |
KURUL N, PODOWSKI M Z. Multidimensional effects in forced convection subcooled boiling[C]//International Heat Transfer Conference Digital Library. Jerusalem: Begell House Inc. , 1990.
|
[18] |
ÜNAL H C. Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 MN/m2[J]. International Journal of Heat and Mass Transfer, 1976, 19(6): 643-649. doi: 10.1016/0017-9310(76)90047-8
|
[19] |
杜利鹏,蒋泽平,崔军,等. 花瓣形燃料元件棒束通道内过冷流动沸腾特性数值研究[J]. 原子能科学技术,2023, 57(2): 264-275.
|
[20] |
LIM J H, PARK M, SHIN S M, et al. Exploring the onset of nucleate boiling with Hypervapotron channel for Tokamak cooling system application[J]. Applied Thermal Engineering, 2022, 209: 118334. doi: 10.1016/j.applthermaleng.2022.118334
|
[21] |
房贤仕,李秋英,陈杰,等. 管内气液两相流流型研究现状与发展[J]. 东北电力大学学报,2022, 42(4): 1-7.
|
[22] |
马爽,李洪伟. 矩形并联微通道中流量分配与流动沸腾传热特性实验研究[J]. 东北电力大学学报,2021, 41(6): 33-42.
|