Advance Search
Volume 45 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
Zhou Suting, Zhang Lin, Nie Changhua, Fan Wenyutao, Huang Yanping, Liu Jie, Yuan Kai. Research on Efficient Verification and State Recognition Method for the Action Reliability of Manual Globe Valve[J]. Nuclear Power Engineering, 2024, 45(4): 190-195. doi: 10.13832/j.jnpe.2024.04.0190
Citation: Zhou Suting, Zhang Lin, Nie Changhua, Fan Wenyutao, Huang Yanping, Liu Jie, Yuan Kai. Research on Efficient Verification and State Recognition Method for the Action Reliability of Manual Globe Valve[J]. Nuclear Power Engineering, 2024, 45(4): 190-195. doi: 10.13832/j.jnpe.2024.04.0190

Research on Efficient Verification and State Recognition Method for the Action Reliability of Manual Globe Valve

doi: 10.13832/j.jnpe.2024.04.0190
  • Received Date: 2023-10-16
  • Rev Recd Date: 2024-05-23
  • Publish Date: 2024-08-12
  • As a typical valve in primary system, manual globe valve is of great importance to maintain system operation and protect system safety. In order to verify the action reliability of the nuclear-grade manual globe valve and determine its operation state accurately and quantitatively, this paper studies and establishes an integrated intelligent operation device for manual globe valve action test, and proposes a method for identifying the state of the manual globe valve based on the combination of wavelet packet decomposition and support vector machine (SVM). Firstly, the torque signal is employed as the characteristic curve and the wavelet packet decomposition technique is utilized to extract the time-frequency domain features. The time domain and time-frequency domain features are integrated to construct the hybrid feature vector. Secondly, the Principal Component Analysis (PCA) is used to perform the dimensionality reduction analysis on the feature vectors to obtain fault feature vectors. Finally, the support vector machine (SVM) method is employed to identify the action state of valve. The results shows that the device constructed in this study solves the problems of long time-consuming and low efficiency in verifying the reliability of manual globe valve actions, as well as the difficulty in quantifying the evaluation of the action process. The proposed method can identify the three action states of the valve accurately and efficiently.

     

  • loading
  • [1]
    魏国俭,陶瑞峰,许健,等. 航天阀门运动副卡滞故障分析及对策[J]. 航天器环境工程,2012, 29(1): 7-13. doi: 10.3969/j.issn.1673-1379.2012.01.002
    [2]
    尚群立,李梦强,张晶瑜. 气动截止阀机理建模及其在阀门故障诊断中的应用[J]. 浙江工业大学学报,2020, 48(2): 154-158,216. doi: 10.3969/j.issn.1006-4303.2020.02.006
    [3]
    邱金水,李少杰,刘少刚,等. 舰船特种阀门极少失效条件下可靠性寿命研究[J]. 哈尔滨工程大学学报,2012, 33(9): 1086-1090.
    [4]
    王洪波,黄智鹏,柳志姣,等. 基于故障模式及失效机理分析的电液伺服阀寿命分析[J]. 机电工程,2022, 39(8): 1132-1137. doi: 10.3969/j.issn.1001-4551.2022.08.015
    [5]
    AL-RAHEEM K F, ROY A, RAMACHANDRAN K P, et al. Application of the Laplace-wavelet combined with ANN for rolling bearing fault diagnosis[J]. Journal of Vibration and Acoustics, 2008, 130(5): 051007. doi: 10.1115/1.2948399
    [6]
    孙伟,熊邦书,黄建萍,等. 小波包降噪与LMD相结合的滚动轴承故障诊断方法[J]. 振动与冲击,2012, 31(18): 153-156.
    [7]
    MISHRA C, SAMANTARAY A K, CHAKRABORTY G. Rolling element bearing fault diagnosis under slow speed operation using wavelet de-noising[J]. Measurement, 2017, 103: 77-86. doi: 10.1016/j.measurement.2017.02.033
    [8]
    KANKAR P K, SHARMA S C, HARSHA S P. Fault diagnosis of rolling element bearing using cyclic autocorrelation and wavelet transform[J]. Neurocomputing, 2013, 110: 9-17. doi: 10.1016/j.neucom.2012.11.012
    [9]
    VAPNIK V N. Statistical learning theory[J]. Encyclopedia of the Sciences of Learning, 2010, 41(4): 3185.
    [10]
    姜久亮,刘文艺,侯玉洁,等. 基于内积延拓LMD及SVM的轴承故障诊断方法研究[J]. 振动与冲击,2016, 35(6): 104-108.
    [11]
    KONAR P, CHATTOPADHYAY P. Bearing fault detection of induction motor using wavelet and support vector machines (SVMs)[J]. Applied Soft Computing, 2011, 11(6): 4203-4211. doi: 10.1016/j.asoc.2011.03.014
    [12]
    BOURINET J M, DEHEEGER F, LEMAIRE M. Assessing small failure probabilities by combined subset simulation and support vector machines[J]. Structural Safety, 2011, 33(6): 343-353. doi: 10.1016/j.strusafe.2011.06.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (545) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return