Advance Search
Volume 45 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
Li Liangxing, Shi Shang, Zhao Haoxiang, Zhao Jiayuan. Design and Multi-Objective Optimization Study of Liquid Lead-Supercritical Carbon Dioxide Heat Exchanger[J]. Nuclear Power Engineering, 2024, 45(4): 196-204. doi: 10.13832/j.jnpe.2024.04.0196
Citation: Li Liangxing, Shi Shang, Zhao Haoxiang, Zhao Jiayuan. Design and Multi-Objective Optimization Study of Liquid Lead-Supercritical Carbon Dioxide Heat Exchanger[J]. Nuclear Power Engineering, 2024, 45(4): 196-204. doi: 10.13832/j.jnpe.2024.04.0196

Design and Multi-Objective Optimization Study of Liquid Lead-Supercritical Carbon Dioxide Heat Exchanger

doi: 10.13832/j.jnpe.2024.04.0196
  • Received Date: 2023-10-20
  • Rev Recd Date: 2024-05-08
  • Publish Date: 2024-08-12
  • In order to improve the comprehensive heat transfer performance of the primary heat exchanger in lead-cooled fast reactors, the present study established a thermal-hydraulic model for a spiral-coil primary heat exchanger using liquid lead and supercritical carbon dioxide (S-CO2) as working fluids. A design code was developed in MATLAB language, and a multi-objective optimization design was conducted on the heat transfer area and comprehensive performance evaluation factor of the primary heat exchanger by employing the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The results showed that the optimization design method proposed in this paper can effectively reduce the heat transfer area of the heat exchanger and improve its comprehensive performance. In the design of the primary heat exchanger, priority should be given to the outer diameter of tubes, the number of spiral tube layers and the number of spiral tubes in the first layer, so as to reduce the heat exchange area and improve the comprehensive heat exchange performance.

     

  • loading
  • [1]
    LU Y M, GUO Z P, GONG Y, et al. Optimal study of swordfish fin microchannel heat exchanger for the next generation nuclear power conversion system of lead-based reactor[J]. Annals of Nuclear Energy, 2022, 165: 108679. doi: 10.1016/j.anucene.2021.108679
    [2]
    ZHANG Y, WANG C L, LAN Z K, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109625. doi: 10.1016/j.rser.2019.109625
    [3]
    沈秀中,于平安,杨修周,等. 铅冷快堆固有安全性的分析[J]. 核动力工程,2002, 23(4): 75-78. doi: 10.3969/j.issn.0258-0926.2002.04.019
    [4]
    黄彦平,刘旻昀,卓文彬,等. 超临界二氧化碳核能动力系统的兴起和发展[J]. 原子能科学技术,2023, 57(9): 1665-1680. doi: 10.7538/yzk.2023.youxian.0345
    [5]
    王桂梅,陈红丽. 铅基反应堆主换热器结构优化及热工水力分析[J]. 中国科学技术大学学报,2014, 44(12): 1007-1013. doi: 10.3969/j.issn.0253-2778.2014.12.008
    [6]
    CHEN F, CAI J, LI X F, et al. 3D numerical simulation of fluid–solid coupled heat transfer with variable property in a LBE-helium heat exchanger[J]. Nuclear Engineering and Design, 2014, 274: 66-76. doi: 10.1016/j.nucengdes.2014.04.024
    [7]
    李晓伟,吴莘馨,张作义,等. 高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J]. 清华大学学报(自然科学版),2021, 61(4): 329-337.
    [8]
    SUBKI H. Advances in small modular reactor technology developments[M]. Austria: International Atomic Energy Agency, 2020.
    [9]
    ALEMBERTI A, CARLSSON J, MALAMBU E, et al. European lead fast reactor—ELSY[J]. Nuclear Engineering and Design, 2011, 241(9): 3470-3480. doi: 10.1016/j.nucengdes.2011.03.029
    [10]
    杨宇鹏,王成龙,张大林,等. 液态金属螺旋管式直流蒸汽发生器数值模拟研究[J]. 原子能科学技术,2021, 55(7): 1288-1295. doi: 10.7538/yzk.2020.youxian.0514
    [11]
    丁雪友,陈志强,文青龙,等. 铅铋快堆螺旋管直流蒸汽发生器热工水力特性数值研究[J]. 核动力工程,2021, 42(4): 21-26.
    [12]
    岳清雯,赖喜德,陈小明,等. 水平螺旋管式换热器的流热耦合传热特性研究[J]. 热能动力工程,2021, 36(4): 118-125.
    [13]
    王翠华,李光瑜,苏方正,等. 螺旋套管换热器壳程流体湍流换热热力性能数值研究[J]. 过程工程学报,2022, 22(7): 935-943. doi: 10.12034/j.issn.1009-606X.221209
    [14]
    WEN J, YANG H Z, TONG X, et al. Optimization investigation on configuration parameters of serrated fin in plate-fin heat exchanger using genetic algorithm[J]. International Journal of Thermal Sciences, 2016, 101: 116-125. doi: 10.1016/j.ijthermalsci.2015.10.024
    [15]
    ZAREA H, KASHKOOLI F M, MEHRYAN A M, et al. Optimal design of plate-fin heat exchangers by a Bees Algorithm[J]. Applied Thermal Engineering, 2014, 69(1-2): 267-277. doi: 10.1016/j.applthermaleng.2013.11.042
    [16]
    SADEGHZADEH H, EHYAEI M A, ROSEN M A. Techno-economic optimization of a shell and tube heat exchanger by genetic and particle swarm algorithms[J]. Energy Conversion and Management, 2015, 93: 84-91. doi: 10.1016/j.enconman.2015.01.007
    [17]
    KIRILLOV P L, USHAKOV P A. Heat transfer to liquid metals: specific features, methods of investigation, and main relationships[J]. Thermal Engineering, 2001, 48(1): 50-59.
    [18]
    王淑香,张伟,牛志愿,等. 超临界压力下CO2在螺旋管内的混合对流换热[J]. 化工学报,2013, 64(11): 3917-3926.
    [19]
    尹清辽,孙玉良,居怀明,等. 模块式高温气冷堆超临界蒸汽发生器设计[J]. 原子能科学技术,2006, 40(6): 707-713. doi: 10.3969/j.issn.1000-6931.2006.06.015
    [20]
    ITŌ H. Friction factors for turbulent flow in curved pipes[J]. Journal of Basic Engineering, 1959, 81(2): 123-132. doi: 10.1115/1.4008390
    [21]
    OECD/NEA Nuclear Science Committee Working Party on Scientific Issues of the Fuel Cycle Working Group on Lead-Bismuth Eutectic. 铅与铅铋共晶合金手册——性能、材料相容性、热工水力学和技术[M]. 戎利建,张玉妥,陆善平,等译. 北京: 科学出版社,2014: 88-91.
    [22]
    ZHANG J, KAPERNICK R J, MCCLURE P R, et al. Lead–bismuth eutectic technology for Hyperion reactor[J]. Journal of Nuclear Materials, 2013, 441(1-3): 644-649. doi: 10.1016/j.jnucmat.2013.04.079
    [23]
    GILLI P V. Heat transfer and pressure drop for cross flow through banks of multistart helical tubes with uniform inclinations and uniform longitudinal pitches[J]. Nuclear Science and Engineering, 1965, 22(3): 298-314. doi: 10.13182/NSE65-A20934
    [24]
    WANG G H, WANG D B, DENG J, et al. Experimental and numerical study on the heat transfer and flow characteristics in shell side of helically coiled tube heat exchanger based on multi-objective optimization[J]. International Journal of Heat and Mass Transfer, 2019, 137: 349-364. doi: 10.1016/j.ijheatmasstransfer.2019.03.137
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (281) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return