Citation: | Liu Xiaoya, Zhao Xinwen, Xiao Hongguang, Ran Lingke, Zhang Yinxing, Zhang Yongfa, Sun Jichen, Ding Ming. Analysis of Convective Heat Transfer Characteristics and Entropy Generation of Fluid in Fish-scale Bionic Enhanced Heat Transfer Tubes[J]. Nuclear Power Engineering, 2024, 45(5): 92-98. doi: 10.13832/j.jnpe.2024.05.0092 |
[1] |
BERGLES A E. Heat transfer enhancement—the encouragement and accommodation of high heat fluxes[J]. Journal of Heat Transfer, 1997, 119(1): 8-19. doi: 10.1115/1.2824105
|
[2] |
林宗虎,汪军,李瑞阳,等. 强化传热技术[M]. 北京: 化学工业出版社,2007: 6-7.
|
[3] |
胡庆祥,彭威,高跃,等. 高温气冷堆中间换热器异型管强化换热研究[J]. 工程热物理学报,2023, 44(7): 1935-1942.
|
[4] |
SAHA S, SAHA S K. Enhancement of heat transfer of laminar flow of viscous oil through a circular tube having integral helical rib roughness and fitted with helical screw-tapes[J]. Experimental Thermal and Fluid Science, 2013, 47: 81-89. doi: 10.1016/j.expthermflusci.2013.01.003
|
[5] |
梁运民. 层流下楔形波浪带插入物流动及传热特性数值研究[D]. 武汉: 华中科技大学,2018.
|
[6] |
LIU X Y, LI C, CAO X X, et al. Numerical analysis on enhanced performance of new coaxial cross twisted tapes for laminar convective heat transfer[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1125-1136. doi: 10.1016/j.ijheatmasstransfer.2018.01.052
|
[7] |
GOH A L. Nature-inspired enhanced microscale heat transfer in macro geometry[D]. Singapore: Nanyang Technological University, 2016.
|
[8] |
GOH A L, OOI K T. Nature-inspired inverted fish scale microscale passages for enhanced heat transfer[J]. International Journal of Thermal Sciences, 2016, 106: 18-31. doi: 10.1016/j.ijthermalsci.2016.03.010
|
[9] |
GOH A L, OOI K T. Scale-inspired enhanced microscale heat transfer in macro geometry[J]. International Journal of Heat and Mass Transfer, 2017, 113: 141-152. doi: 10.1016/j.ijheatmasstransfer.2017.05.067
|
[10] |
DEY P, HEDAU G, SAHA S K. Experimental and numerical investigations of fluid flow and heat transfer in a bioinspired surface enriched microchannel[J]. International Journal of Thermal Sciences, 2019, 135: 44-60. doi: 10.1016/j.ijthermalsci.2018.08.042
|
[11] |
LI P, GUO D Z, HUANG X Y. Heat transfer enhancement, entropy generation and temperature uniformity analyses of shark-skin bionic modified microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118846. doi: 10.1016/j.ijheatmasstransfer.2019.118846
|
[12] |
HU K B, LU C, YU B C, et al. Optimization of bionic heat sinks with self-organized structures inspired by termite nest morphologies[J]. International Journal of Heat and Mass Transfer, 2023, 202: 123735. doi: 10.1016/j.ijheatmasstransfer.2022.123735
|
[13] |
张凯,王飞龙,何雅玲. 新型仿生结构强化管流动与换热性能数值研究[J]. 工程热物理学报,2019, 40(2): 375-381.
|
[14] |
陈明健. 树状微通道散热器强化换热的数值模拟研究[D]. 南昌: 南昌大学,2022.
|
[15] |
王宁. 仿生蛛网型微通道散热器结构研究及参数优化[D]. 太原: 中北大学,2022.
|
[16] |
汪维伟,黄昕之,赵福云,等. 基于叶脉仿生的散热均热板性能研究[J]. 航天器环境工程,2021, 38(2): 138-147. doi: 10.12126/see.2021.02.004
|
[17] |
郭昊添,徐涛,梁逍,等. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报: 工学版,2018, 48(6): 1793-1798.
|
[18] |
刘辰玥,郑通,刘渊博,等. 异形仿生换热器壳侧对流换热的高效低阻特性研究[J]. 化工学报,2021, 72(9): 4511-4522.
|
[19] |
李娟,朱章钰,翟昊,等. 基于仿生学的强化传热与减阻技术研究进展[J]. 化工进展,2021, 40(5): 2375-2388.
|
[20] |
FAN J F, DING W K, ZHANG J F, et al. A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving[J]. International Journal of Heat and Mass Transfer, 2009, 52(1-2): 33-44. doi: 10.1016/j.ijheatmasstransfer.2008.07.006
|
[21] |
BEJAN A. A study of entropy generation in fundamental convective heat transfer[J]. Journal of Heat Transfer, 1979, 101(4): 718-725. doi: 10.1115/1.3451063
|
[22] |
曲行丽,阎昌琪,范广铭. 微肋管单相对流强化换热数值模拟[J]. 应用科技,2009, 36(4): 65-68. doi: 10.3969/j.issn.1009-671X.2009.04.017
|
[23] |
曲行丽. 扁管单相对流强化换热研究[D]. 哈尔滨: 哈尔滨工程大学,2009.
|