Advance Search
Volume 45 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
Liu Xiaoya, Zhao Xinwen, Xiao Hongguang, Ran Lingke, Zhang Yinxing, Zhang Yongfa, Sun Jichen, Ding Ming. Analysis of Convective Heat Transfer Characteristics and Entropy Generation of Fluid in Fish-scale Bionic Enhanced Heat Transfer Tubes[J]. Nuclear Power Engineering, 2024, 45(5): 92-98. doi: 10.13832/j.jnpe.2024.05.0092
Citation: Liu Xiaoya, Zhao Xinwen, Xiao Hongguang, Ran Lingke, Zhang Yinxing, Zhang Yongfa, Sun Jichen, Ding Ming. Analysis of Convective Heat Transfer Characteristics and Entropy Generation of Fluid in Fish-scale Bionic Enhanced Heat Transfer Tubes[J]. Nuclear Power Engineering, 2024, 45(5): 92-98. doi: 10.13832/j.jnpe.2024.05.0092

Analysis of Convective Heat Transfer Characteristics and Entropy Generation of Fluid in Fish-scale Bionic Enhanced Heat Transfer Tubes

doi: 10.13832/j.jnpe.2024.05.0092
  • Received Date: 2023-11-28
  • Rev Recd Date: 2024-01-17
  • Publish Date: 2024-10-14
  • With the development of bionics, bionic technology has better drag reduction and heat transfer effects. Inspired by the fish-scale bionic concept, three biomimetic enhanced heat transfer tubes are proposed. The effects of different depths, spacings and angles of bionic enhanced heat transfer tubes on the fluid flow and heat transfer characteristics in the turbulent flow regime (Re=15700−62900) are studied by numerical simulation. The results show that the three bionic enhanced heat transfer tubes all have perfect heat transfer enhancement effect. The greater the depth, the smaller the spacing and the smaller the angle, the better heat transfer enhancement effect. Under the same conditions, the comprehensive performance and entropy generation of bionic enhanced heat transfer tubes are analyzed, and it is found that the second type has the best comprehensive performance, the largest performance evaluation criteria (PEC) and the smallest power loss.

     

  • loading
  • [1]
    BERGLES A E. Heat transfer enhancement—the encouragement and accommodation of high heat fluxes[J]. Journal of Heat Transfer, 1997, 119(1): 8-19. doi: 10.1115/1.2824105
    [2]
    林宗虎,汪军,李瑞阳,等. 强化传热技术[M]. 北京: 化学工业出版社,2007: 6-7.
    [3]
    胡庆祥,彭威,高跃,等. 高温气冷堆中间换热器异型管强化换热研究[J]. 工程热物理学报,2023, 44(7): 1935-1942.
    [4]
    SAHA S, SAHA S K. Enhancement of heat transfer of laminar flow of viscous oil through a circular tube having integral helical rib roughness and fitted with helical screw-tapes[J]. Experimental Thermal and Fluid Science, 2013, 47: 81-89. doi: 10.1016/j.expthermflusci.2013.01.003
    [5]
    梁运民. 层流下楔形波浪带插入物流动及传热特性数值研究[D]. 武汉: 华中科技大学,2018.
    [6]
    LIU X Y, LI C, CAO X X, et al. Numerical analysis on enhanced performance of new coaxial cross twisted tapes for laminar convective heat transfer[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1125-1136. doi: 10.1016/j.ijheatmasstransfer.2018.01.052
    [7]
    GOH A L. Nature-inspired enhanced microscale heat transfer in macro geometry[D]. Singapore: Nanyang Technological University, 2016.
    [8]
    GOH A L, OOI K T. Nature-inspired inverted fish scale microscale passages for enhanced heat transfer[J]. International Journal of Thermal Sciences, 2016, 106: 18-31. doi: 10.1016/j.ijthermalsci.2016.03.010
    [9]
    GOH A L, OOI K T. Scale-inspired enhanced microscale heat transfer in macro geometry[J]. International Journal of Heat and Mass Transfer, 2017, 113: 141-152. doi: 10.1016/j.ijheatmasstransfer.2017.05.067
    [10]
    DEY P, HEDAU G, SAHA S K. Experimental and numerical investigations of fluid flow and heat transfer in a bioinspired surface enriched microchannel[J]. International Journal of Thermal Sciences, 2019, 135: 44-60. doi: 10.1016/j.ijthermalsci.2018.08.042
    [11]
    LI P, GUO D Z, HUANG X Y. Heat transfer enhancement, entropy generation and temperature uniformity analyses of shark-skin bionic modified microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118846. doi: 10.1016/j.ijheatmasstransfer.2019.118846
    [12]
    HU K B, LU C, YU B C, et al. Optimization of bionic heat sinks with self-organized structures inspired by termite nest morphologies[J]. International Journal of Heat and Mass Transfer, 2023, 202: 123735. doi: 10.1016/j.ijheatmasstransfer.2022.123735
    [13]
    张凯,王飞龙,何雅玲. 新型仿生结构强化管流动与换热性能数值研究[J]. 工程热物理学报,2019, 40(2): 375-381.
    [14]
    陈明健. 树状微通道散热器强化换热的数值模拟研究[D]. 南昌: 南昌大学,2022.
    [15]
    王宁. 仿生蛛网型微通道散热器结构研究及参数优化[D]. 太原: 中北大学,2022.
    [16]
    汪维伟,黄昕之,赵福云,等. 基于叶脉仿生的散热均热板性能研究[J]. 航天器环境工程,2021, 38(2): 138-147. doi: 10.12126/see.2021.02.004
    [17]
    郭昊添,徐涛,梁逍,等. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报: 工学版,2018, 48(6): 1793-1798.
    [18]
    刘辰玥,郑通,刘渊博,等. 异形仿生换热器壳侧对流换热的高效低阻特性研究[J]. 化工学报,2021, 72(9): 4511-4522.
    [19]
    李娟,朱章钰,翟昊,等. 基于仿生学的强化传热与减阻技术研究进展[J]. 化工进展,2021, 40(5): 2375-2388.
    [20]
    FAN J F, DING W K, ZHANG J F, et al. A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving[J]. International Journal of Heat and Mass Transfer, 2009, 52(1-2): 33-44. doi: 10.1016/j.ijheatmasstransfer.2008.07.006
    [21]
    BEJAN A. A study of entropy generation in fundamental convective heat transfer[J]. Journal of Heat Transfer, 1979, 101(4): 718-725. doi: 10.1115/1.3451063
    [22]
    曲行丽,阎昌琪,范广铭. 微肋管单相对流强化换热数值模拟[J]. 应用科技,2009, 36(4): 65-68. doi: 10.3969/j.issn.1009-671X.2009.04.017
    [23]
    曲行丽. 扁管单相对流强化换热研究[D]. 哈尔滨: 哈尔滨工程大学,2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (27) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return