Advance Search
Volume 45 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
Chen Changyi, Xi Yanyan, Lu Yaheng, Wu Xuanlong, Wu Feng. Analysis of Influence of Expansion on Control Rod Drop in Nuclear Reactor at High Temperature[J]. Nuclear Power Engineering, 2024, 45(5): 108-114. doi: 10.13832/j.jnpe.2024.05.0108
Citation: Chen Changyi, Xi Yanyan, Lu Yaheng, Wu Xuanlong, Wu Feng. Analysis of Influence of Expansion on Control Rod Drop in Nuclear Reactor at High Temperature[J]. Nuclear Power Engineering, 2024, 45(5): 108-114. doi: 10.13832/j.jnpe.2024.05.0108

Analysis of Influence of Expansion on Control Rod Drop in Nuclear Reactor at High Temperature

doi: 10.13832/j.jnpe.2024.05.0108
  • Received Date: 2023-11-19
  • Rev Recd Date: 2024-07-23
  • Publish Date: 2024-10-14
  • The high temperature environment in the nuclear reactor will cause the thermal expansion of the control rod assembly, which will affect the falling time of the control rod assembly. In order to study the effect of thermal expansion on the drop of control rod assemblies, a fluid-structure coupling model for the drop of control rod assemblies was established considering expansion deformation, and the dynamic equations for the drop process of control rod assemblies were solved. The steady state thermodynamic coupling analysis of the guide tube and control rod is performed using finite element method to obtain the expansion deformation of the control rod and guide tube under high temperature conditions. Based on the established analytical model, the dynamic processes of control rod drop with and without expansion is compared. The analysis results show that the thermal expansion phenomenon delays the total drop time of the control rod, but has little impact on the drop time before the buffer section. Therefore, in general, the impact of thermal expansion on the drop time can be ignored, but the consequences caused by the control rod expansion still need to be paid attention to in the engineering design. The conclusion of this paper is important for the design of control rod and the analysis of in-pile control rod drop time.

     

  • loading
  • [1]
    YOON K H, KIM J Y, LEE K H, et al. Control rod drop analysis by finite element method using fluid–structure interaction for a pressurized water reactor power plant[J]. Nuclear Engineering and Design, 2009, 239(10): 1857-1861. doi: 10.1016/j.nucengdes.2009.05.023
    [2]
    PARHIZKARI H, AGHAIE M, ZOLFAGHARI A, et al. Analysis of control rod drop accident in PWRs with multipoint kinetics method[J]. Annals of Nuclear Energy, 2016, 88: 194-203. doi: 10.1016/j.anucene.2015.10.039
    [3]
    KENNEDY G, LAMBERTS D, VAN TICHELEN K, et al. Experimental and numerical study of the MYRRHA control rod system dynamics[C]//Proceedings of 2017 International Congress on Advances in Nuclear Power Plants. Shimbashi, Minato: Atomic Energy Society, 2017: 24-28.
    [4]
    张吉斌,高希龙,何航行,等. 控制棒落棒动力学数值计算[J]. 核动力工程,2020, 41(6): 218-223.
    [5]
    周红,肖志,陶书生,等. 运行核电厂控制棒组件及其驱动机构异常事件的经验反馈[J]. 核安全,2013(1): 19-22,35, doi: 10.16432/j.cnki.1672-5360.2013.01.012.
    [6]
    单秉昆. 核电站控制棒组件(RCCA)肿胀机理分析[J]. 科技视界,2014(35): 320-321.
    [7]
    蔡家藩,陈增武,乔维,等. 核电站反应堆控制棒束组件检查技术应用[C]//中国核学会. 中国核科学技术进展报告——中国核学会2009年学术年会论文集(第一卷·第3册). 北京: 原子能出版社,2009: 463-470.
    [8]
    周建钦,梁尚明,赵军. 高温下控制棒驱动机构结构完整性分析[J]. 机械,2018, 45(7): 13-17.
    [9]
    HALL M M. Stress state dependence of in-reactor creep and swelling[J]. Journal of Nuclear Materials, 2010, 396(1): 112-118. doi: 10.1016/j.jnucmat.2009.10.063
    [10]
    NIKITIN E, FRIDMAN E. Extension of the reactor dynamics code DYN3D to SFR applications – Part I: thermal expansion models[J]. Annals of Nuclear Energy, 2018, 119: 382-389. doi: 10.1016/j.anucene.2018.05.015
    [11]
    YUN S, MIKHAILOV G, KIM S J, et al. A study on the radial expansion reactivity of a metal-fueled sodium-cooled fast reactor via a physics experiment[J]. Annals of Nuclear Energy, 2021, 153: 108072. doi: 10.1016/j.anucene.2020.108072
    [12]
    孔珑. 工程流体力学[M]. 北京: 中国电力出版社,2001: 226-231.
    [13]
    赵珂,陈昌义,席炎炎,等. 控制棒下落与流体流动的耦合状态方程及其保辛算法[J]. 应用数学和力学,2022, 43(9): 935-943.
    [14]
    王瑞红,丁向东,肖林,等. 渗氢前后Zr-4合金板的力学性能及有限元模拟[J]. 中国有色金属学报,2002, 12(3): 544-549.
    [15]
    薛淑娟,王云惠,赵文金,等. 锆、锆-4合金及新锆合金的热膨胀[J]. 核动力工程,2004, 25(3): 236-240.
    [16]
    张莉丽. Zr-4合金堆外热物理性能的测量研究[J]. 中国原子能科学研究院年报,1990: 280-282.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (37) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return