Advance Search
Volume 45 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
Liu Yapeng, Zhang Dalin, Chen Yutong, Zhou Lei, Tian Wenxi, Qiu Suizheng, Su Guanghui. Numerical Simulation of the Natural Circulation Test of PHENIX Reactor by ACENA[J]. Nuclear Power Engineering, 2024, 45(5): 121-127. doi: 10.13832/j.jnpe.2024.05.0121
Citation: Liu Yapeng, Zhang Dalin, Chen Yutong, Zhou Lei, Tian Wenxi, Qiu Suizheng, Su Guanghui. Numerical Simulation of the Natural Circulation Test of PHENIX Reactor by ACENA[J]. Nuclear Power Engineering, 2024, 45(5): 121-127. doi: 10.13832/j.jnpe.2024.05.0121

Numerical Simulation of the Natural Circulation Test of PHENIX Reactor by ACENA

doi: 10.13832/j.jnpe.2024.05.0121
  • Received Date: 2023-09-17
  • Rev Recd Date: 2024-04-26
  • Publish Date: 2024-10-14
  • Natural circulation decay heat removal is is an important passive safety feature of pool-type sodium-cooled fast reactor (SFR), but it also brings new problems and challenges to the design and safety analysis of SFR. Whether the natural cycle can be established and whether the natural cycle can take away the decay heat of the core is an important part of the reactor safety analysis under station black-out accident (SBO). In order to verify the reliability of the liquid metal accident analysis code ACENA in the simulation of natural cycle decay heat removal in SFR, the natural circulation test conducted by the French Alternative Energies and Atomic Energy Commission (CEA) at the end of the life of pool-type sodium-cooled fast reactor PHENIX was modeled and analyzed. The effect of thermal stratification on natural circulation was considered by two-dimensional finite difference method in sodium pool. The verification results show that ACENA can accurately analyze the process of forced circulation to natural circulation and accurately predict the key parameters. The code can also calculate the thermal stratification phenomenon in the sodium pool, and has the calculation capacity of natural circulation decay heat removal.

     

  • loading
  • [1]
    TENCHINE D. Some thermal hydraulic challenges in sodium cooled fast reactors[J]. Nuclear Engineering and Design, 2010, 240(5): 1195-1217. doi: 10.1016/j.nucengdes.2010.01.006
    [2]
    ONO A, KAMIDE H, KOBAYASHI J, et al. An experimental study on natural circulation decay heat removal system for a loop type fast reactor[J]. Journal of Nuclear Science and Technology, 2016, 53(9): 1385-1396. doi: 10.1080/00223131.2015.1121844
    [3]
    WATANABE O, OYAMA K, ENDO J, et al. Development of an evaluation methodology for the natural circulation decay heat removal system in a sodium cooled fast reactor[J]. Journal of Nuclear Science and Technology, 2015, 52(9): 1102-1121. doi: 10.1080/00223131.2014.994049
    [4]
    WANG S B, ZHANG D L, LIU Y P, et al. An experiment‐based validation of a system code for prediction of passive natural circulation in sodium‐cooled fast reactor[J]. International Journal of Energy Research, 2021, 45(8): 12093-12109. doi: 10.1002/er.6103
    [5]
    IAEA. Benchmark analyses on the natural circulation test performed during the PHENIX end-of-life experiments: IAEA-TECDOC-1703[R]. Vienna: International Atomic Energy Agency, 2013.
    [6]
    TENCHINE D, PIALLA D, FANNING T H, et al. International benchmark on the natural convection test in Phenix reactor[J]. Nuclear Engineering and Design, 2013, 258: 189-198. doi: 10.1016/j.nucengdes.2013.02.010
    [7]
    TENCHINE D, PIALLA D, GAUTHÉ P, et al. Natural convection test in Phenix reactor and associated CATHARE calculation[J]. Nuclear Engineering and Design, 2012, 253: 23-31. doi: 10.1016/j.nucengdes.2012.08.001
    [8]
    齐少璞,杨红义,杨晓燕,等. 基于FR-Sdaso的法国凤凰堆寿期末自然循环实验分析[J]. 原子能科学技术,2020, 54(2): 273-280. doi: 10.7538/yzk.2019.youxian.0120
    [9]
    YUE N N, ZHANG D L, CHEN J, et al. The development and validation of the inter-wrapper flow model in sodium-cooled fast reactors[J]. Progress in Nuclear Energy, 2018, 108: 54-65. doi: 10.1016/j.pnucene.2018.05.007
    [10]
    JEONG H Y, HA K S, CHOI C W. Multi-dimensional pool analysis of Phenix end-of-life natural circulation test with MARS-LMR code[J]. Annals of Nuclear Energy, 2014, 63: 309-316. doi: 10.1016/j.anucene.2013.08.010
    [11]
    MOCHIZUKI H, KIKUCHI N, LI S. Computation of natural convection test at Phenix reactor using the NETFLOW++ code[J]. Nuclear Engineering and Design, 2013, 262: 1-11. doi: 10.1016/j.nucengdes.2013.03.056
    [12]
    ZHOU C, HUBER K, CHENG X. Validation of the modified ATHLET code with the natural convection test of the PHENIX reactor[J]. Annals of Nuclear Energy, 2013, 59: 31-46. doi: 10.1016/j.anucene.2013.03.035
    [13]
    WAHNON S S P, AMMIRABILE L, KLOOSTERMAN J L, et al. Multi-physics models for design basis accident analysis of sodium fast reactors. Part I: Validation of three-dimensional TRACE thermal-hydraulics model using Phenix end-of-life experiments[J]. Nuclear Engineering and Design, 2018, 331: 331-341. doi: 10.1016/j.nucengdes.2018.02.038
    [14]
    PARTHASARATHY U, SUNDARARAJAN T, BALAJI C, et al. Decay heat removal in pool type fast reactor using passive systems[J]. Nuclear Engineering and Design, 2012, 250: 480-499. doi: 10.1016/j.nucengdes.2012.05.014
    [15]
    BAVIÈRE R, TAUVERON N, PERDU F, et al. A first system/CFD coupled simulation of a complete nuclear reactor transient using CATHARE2 and TRIO_U. Preliminary validation on the Phénix Reactor Natural Circulation Test[J]. Nuclear Engineering and Design, 2014, 277: 124-137. doi: 10.1016/j.nucengdes.2014.05.031
    [16]
    PIALLA D, TENCHINE D, LI S, et al. Overview of the system alone and system/CFD coupled calculations of the PHENIX Natural Circulation Test within the THINS project[J]. Nuclear Engineering and Design, 2015, 290: 78-86. doi: 10.1016/j.nucengdes.2014.12.006
    [17]
    IAEA. Benchmark analyses on the control rod withdrawal tests performed during the PHÉNIX end-of-life experiments: IAEA-TECDOC-1742[R]. Vienna: International Atomic Energy Agency, 2014.
    [18]
    CHEN Y T, ZHANG D L, LIANG Y, et al. Preliminary development and validation of ACENA code for heavy liquid metal-gas two phase flow simulation[J]. Annals of Nuclear Energy, 2021, 161: 108452. doi: 10.1016/j.anucene.2021.108452
    [19]
    林悦,张大林,陈宇彤,等. 熔融铅铋与水相互作用热工水力特性研究[J]. 原子能科学技术,2023, 57(S1): 56-66.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (43) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return