Citation: | Luo Simin, Zhan Dekui, Chen Peng. Research on Heat Transfer Characteristics of Corium Pool Under Oscillating Conditions[J]. Nuclear Power Engineering, 2024, 45(5): 128-135. doi: 10.13832/j.jnpe.2024.05.0128 |
[1] |
ZHANG Y P, SU G H, QIU S Z, et al. A simple novel and fast computational model for the LIVE-L4[J]. Progress in Nuclear Energy, 2013, 68: 20-30. doi: 10.1016/j.pnucene.2013.04.009
|
[2] |
KYMÄLÄINEN O, TUOMISTO H, HONGISTO O, et al. Heat flux distribution from a volumetrically heated pool with high Rayleigh number[J]. Nuclear Engineering and Design, 1994, 149(1-3): 401-408. doi: 10.1016/0029-5493(94)90305-0
|
[3] |
BONNET J M, SEILER J M. Thermal hydraulic phenomena in corium pools: the BALI experiment[C]//7th International Conference on Nuclear Engineering. Tokyo: Japan Society of Mechanical Engineers, 1999.
|
[4] |
Gubaidullin AA, Sehgal BR. SIMECO tests in a melt stratified pool[C]. The 10th International Conference on Nuclear Engineering (ICONE-10), Arlington, USA, 2002: 935-945.
|
[5] |
FLUHRER B, MIASSOEDOV A, CRON T, et al. The LIVE-L1 and LIVE-L3 experiments on melt behaviour in RPV lower head: FZKA 7419[R]. Karlsruhe: Forschungszentrum Karlsruhe GmbH, 2008.
|
[6] |
MIASSOEDOV A, CRON T, FOIT J, et al. Results of the LIVE-L1 experiment on melt behaviour in RPV lower head performed within the LACOMERA project at the Forschungszentrum Karlsruhe[C]//15th International Conference on Nuclear Engineering (ICONE-15). Tokyo: Japan Society of Mechanical Engineers, 2007: 22-26.
|
[7] |
GAUS-LIU X, MIASSOEDOV A, CRON T, et al. Test and simulation results of LIVE-L4 + LIVE-L5L: KIT-SR-7593[R]. Germany: Karlsruhe Institute of Technology, 2011.
|
[8] |
ZHANG L T, ZHANG Y P, ZHOU Y K, et al. COPRA experiments on natural convection heat transfer in a volumetrically heated slice pool with high Rayleigh numbers[J]. Annals of Nuclear Energy, 2016, 87: 81-88. doi: 10.1016/j.anucene.2015.08.021
|
[9] |
ZHANG Y P, ZHANG L T, ZHOU Y K, et al. Natural convection heat transfer test for in-vessel retention at prototypic Rayleigh numbers–results of COPRA experiments[J]. Progress in Nuclear Energy, 2016, 86: 80-86. doi: 10.1016/j.pnucene.2015.10.014
|
[10] |
LUO S M, ZHANG Y P, ZHOU Y K, et al. COPRA experiment and numerical research on the behavior of internally-heated melt pool with eutectic salt[J]. Applied Thermal Engineering, 2018, 140: 313-324. doi: 10.1016/j.applthermaleng.2018.05.041
|
[11] |
ZHOU Y K, ZHANG Y P, LUO S M, et al. Results of simulant effect on large corium pool behavior based on COPRA facility[J]. Progress in Nuclear Energy, 2018, 108: 398-408. doi: 10.1016/j.pnucene.2018.06.018
|
[12] |
ZHANG L T, LUO S M, ZHANG Y P, et al. Large eddy simulation on turbulent heat transfer in reactor vessel lower head corium pools[J]. Annals of Nuclear Energy, 2018, 111: 293-302. doi: 10.1016/j.anucene.2017.08.055
|
[13] |
LUO S M, ZHANG Y P, ZHANG D L, et al. Numerical analysis of simulant effect on natural convection characteristics in corium pools[J]. Applied Thermal Engineering, 2019, 156: 730-740. doi: 10.1016/j.applthermaleng.2019.04.101
|
[14] |
ZHANG L T, ZHOU Y K, LUO S M, et al. Large eddy simulation for the thermal behavior of one-layer and two-layer corium pool configurations in HPR1000 reactor[J]. Applied Thermal Engineering, 2018, 145: 38-47. doi: 10.1016/j.applthermaleng.2018.09.019
|
[15] |
LUO S M, ZHANG Y P, ZHANG D L, et al. Convection of internal-heated two-layer fluids with deformable interface under swinging motion conditions[J]. Applied Thermal Engineering, 2020, 167: 114755. doi: 10.1016/j.applthermaleng.2019.114755
|
[16] |
LUO S M, CHEN P, BAI J Y, et al. Experimental research on the influence of rolling motions on the convection behaviors inside two-layer corium pools[J]. Progress in Nuclear Energy, 2020, 128: 103466. doi: 10.1016/j.pnucene.2020.103466
|
[17] |
LUO S M, WANG X A, ZHANG Y P, et al. Numerical research on melt pool flow characteristics under rolling condition[C]//Proceedings of the 26th International Conference on Nuclear Engineering. London: ASME, 2018.
|