Advance Search
Volume 45 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
Li Zongyang, Hao Wentao, Zhang Wenwen, Li Weihua, Yang Xingtuan. Scaling Experimental Design of Horizontal Steam Generator in NHR200-II[J]. Nuclear Power Engineering, 2024, 45(5): 136-141. doi: 10.13832/j.jnpe.2024.05.0136
Citation: Li Zongyang, Hao Wentao, Zhang Wenwen, Li Weihua, Yang Xingtuan. Scaling Experimental Design of Horizontal Steam Generator in NHR200-II[J]. Nuclear Power Engineering, 2024, 45(5): 136-141. doi: 10.13832/j.jnpe.2024.05.0136

Scaling Experimental Design of Horizontal Steam Generator in NHR200-II

doi: 10.13832/j.jnpe.2024.05.0136
  • Received Date: 2023-10-19
  • Rev Recd Date: 2024-05-06
  • Publish Date: 2024-10-14
  • To broaden the application range and improve the economic feasibility of 200 MW Low-Temperature Nuclear Heating Reactor (NHR200-Ⅱ), a redesign of its intermediate loop has been proposed, including a new superheated steam supply system that incorporates horizontal steam generators (HSG). Due to the high cost and long period of prototype scale verification tests, a scaling modeling analysis of the two-phase natural circulation within the HSG was employed using the Hierarchical Two Tiered Scaling (H2TS) method. Theoretical derivations provided scaling analysis criteria under isothermal conditions and scaling numerical values under various scaling conditions. Both the prototype and the model employed water as the test fluid, and numerical modeling of the prototype and the model was conducted by using the RELAP5 code. The numerical calculations indicated that the key parameters’ proportional relationships between the model and the prototype were consistent with the theoretically derived results. Considering factors such as test economy, accuracy, and safety, a 1:4 scale model-to-prototype length ratio was ultimately selected as the scaling factor for subsequent verification tests, corresponding to a power ratio of 1:96.

     

  • loading
  • [1]
    郝文涛,张亚军. 低温供热堆研究进展[J]. 中国核电,2019, 12(5): 518-521.
    [2]
    杨星团,姜胜耀,张佑杰. 核供热堆条件下自然循环两相漂移流模型参数的确定[J]. 核动力工程,2003, 24(S2): 16-20.
    [3]
    李卫华,张亚军,郭吉林,等. 一体化核供热堆Ⅱ型的开发及应用前景初步分析[J]. 原子能科学技术,2009, 43(S2): 215-218.
    [4]
    崔保元,丁训慎. 苏联压水堆卧式蒸汽发生器[J]. 核动力工程,1985, 6(1): 10-19.
    [5]
    赵二雷,李朋洲,彭兴建,等. 新型蒸汽发生器综合性能实验研究[J]. 原子能科学技术,2018, 52(5): 868-874. doi: 10.7538/yzk.2018.52.05.0868
    [6]
    杨晔,隋增光,董世昌,等. 自然循环蒸汽发生器比例分析[C]//第十五届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室学术年会论文集. 荣成: 中国核学会核能动力分会反应堆热工流体专业委员会,中核核反应堆热工水力技术重点实验室,2023.
    [7]
    ISHII M. Thermally induced flow instabilities in two-phase mixtures in thermal equilibrium[D]. United States: Georgia Institute of Technology, 1971.
    [8]
    ZUBER N, WILSON G E, ISHII M, et al. An integrated structure and scaling methodology for severe accident technical issue resolution: Development of methodology[J]. Nuclear Engineering and Design, 1998, 186(1-2): 1-21. doi: 10.1016/S0029-5493(98)00215-5
    [9]
    REYES JR J N, HOCHREITER L. Scaling analysis for the OSU AP600 test facility (APEX)[J]. Nuclear Engineering and Design, 1998, 186(1-2): 53-109. doi: 10.1016/S0029-5493(98)00218-0
    [10]
    房芳芳,杨福明,郝博涛,等. ACME试验台架典型小破口工况试验及数值分析[J]. 原子能科学技术,2017, 51(8): 1393-1399. doi: 10.7538/yzk.2017.51.08.1393
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (79) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return