Citation: | Wang Jun, Wang zhiguo, Cai Zhenbing, Li Zhengyang, Ren Quanyao, Liu Xiaohong, Jiao Yongjun. Study on Fretting Wear Behavior of Pre-oxidized Zircaloy Cladding in High Temperature and High Pressure Water[J]. Nuclear Power Engineering, 2024, 45(5): 142-154. doi: 10.13832/j.jnpe.2024.05.0142 |
[1] |
CAI Z B, LI Z Y, YIN M G, et al. A review of fretting study on nuclear power equipment[J]. Tribology International, 2020, 144: 106095. doi: 10.1016/j.triboint.2019.106095
|
[2] |
高雯. 锆合金包壳和GH4169镍基合金的微动摩擦磨损性能研究[J]. 核动力工程,2020, 41(4): 85-90.
|
[3] |
KUMARA C, WANG R, LU R Y, et al. Grid-to-rod fretting wear study of SiC/SiC composite accident-tolerant fuel claddings using an autoclave fretting bench test[J]. Wear, 2022, 488-489: 204172. doi: 10.1016/j.wear.2021.204172
|
[4] |
任全耀,蒲曾坪,焦拥军,等. 高温下锆合金包壳切向微动磨蚀行为研究[J]. 核动力工程,2022, 43(S2): 82-87.
|
[5] |
ZINKLE S J, WAS G S. Materials challenges in nuclear energy[J]. Acta Materialia, 2013, 61(3): 735-758. doi: 10.1016/j.actamat.2012.11.004
|
[6] |
KIM K T. Evolutionary developments of advanced PWR nuclear fuels and cladding materials[J]. Nuclear Engineering and Design, 2013, 263: 59-69. doi: 10.1016/j.nucengdes.2013.04.013
|
[7] |
WANG J, LEI Y J, LI Z Y, et al. Effect of contact misalignment on fretting wear behavior between fuel cladding and Zr-4 grid[J]. Tribology International, 2023, 181: 108299. doi: 10.1016/j.triboint.2023.108299
|
[8] |
江海霞,段泽文,马鹏翔,等. 核反应堆中锆合金包壳及其表面涂层的微动磨损行为研究进展[J]. 摩擦学学报,2021, 41(3): 423-436.
|
[9] |
ZHU M H, ZHOU Z R. On the mechanisms of various fretting wear modes[J]. Tribology International, 2011, 44(11): 1378-1388. doi: 10.1016/j.triboint.2011.02.010
|
[10] |
李好杰,宁闯明,李正阳,等. 904L不锈钢在不同气氛下微动磨损性能研究[J]. 摩擦学学报,2023, 43(10): 1128-1139.
|
[11] |
杨红艳,吕俊男,张瑞谦,等. 锆合金表面Cr涂层在高温水蒸气环境中氧化行为研究[J]. 核动力工程,2023, 44(S1): 168-175.
|
[12] |
KIM T H, KIM S S. Fretting wear mechanisms of Zircaloy-4 and Inconel 600 contact in air[J]. KSME International Journal, 2001, 15(9): 1274-1280. doi: 10.1007/BF03185668
|
[13] |
YUAN X L, ZHANG X Y, ZHANG Q, et al. Study on the fretting maps of Zircaloy-4 alloy against Inconel 718 alloy[J]. Tribology International, 2021, 160: 107024. doi: 10.1016/j.triboint.2021.107024
|
[14] |
LEE Y H, KIM H K, JUNG Y H. Effect of impact frequency on the wear behavior of spring-supported tubes in room and high temperature distilled water[J]. Wear, 2005, 259(1-6): 329-336. doi: 10.1016/j.wear.2005.01.019
|
[15] |
KIM H K, LEE Y H. Influence of contact shape and supporting condition on tube fretting wear[J]. Wear, 2003, 255(7-12): 1183-1197. doi: 10.1016/S0043-1648(03)00068-1
|
[16] |
KIM H K, LEE Y H, LEE K H. On the geometry of the fuel rod supports concerning a fretting wear failure[J]. Nuclear Engineering and Design, 2008, 238(12): 3321-3330. doi: 10.1016/j.nucengdes.2008.08.010
|
[17] |
KIM K S, YOON K H, SONG K N, et al. Finite element analysis of the optimized H type grid spring by using gap elements[J]. Nuclear Engineering and Design, 2008, 238(9): 2239-2244. doi: 10.1016/j.nucengdes.2008.02.025
|
[18] |
LEE Y H, KIM H K. A study on the fretting wear resistance of a zirconium alloy with the variation of supporting spring properties[J]. Key Engineering Materials, 2007, 345-346: 1365-1368. doi: 10.4028/www.scientific.net/KEM.345-346.1365
|
[19] |
LEE Y H, KIM H K. Fretting wear behavior of a nuclear fuel rod under a simulated primary coolant condition[J]. Wear, 2013, 301(1-2): 569-574. doi: 10.1016/j.wear.2013.01.067
|
[20] |
PARK Y C, JEONG S H, KIM Y H, et al. Influence of temperature on the fretting wear of advanced nuclear fuel cladding tube against supporting grid[J]. Key Engineering Materials, 2007, 345-346: 705-708. doi: 10.4028/www.scientific.net/KEM.345-346.705
|
[21] |
ATTIA M H, DE PANNEMAECKER A, WILLIAMS G. Effect of temperature on tribo-oxide formation and the fretting wear and friction behavior of zirconium and nickel-based alloys[J]. Wear, 2021, 476: 203722. doi: 10.1016/j.wear.2021.203722
|
[22] |
WANG J, LI H J, LI Z Y, et al. Effect of temperature on the fretting wear behavior of Cr-coated Zircaloy cladding in high-temperature pressurized water[J]. Journal of Nuclear Materials, 2023, 584: 154516. doi: 10.1016/j.jnucmat.2023.154516
|
[23] |
QU J, COOLEY K M, SHAW A H, et al. Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation[J]. Wear, 2016, 356-357: 17-22. doi: 10.1016/j.wear.2016.02.020
|
[24] |
LEE Y H, KIM I H, KIM H K, et al. Role of ZrO2 oxide layer on the fretting wear resistance of a nuclear fuel rod[J]. Tribology International, 2020, 145: 106146.
|
[25] |
WANG J, LI H J, LI Z Y, et al. Fretting wear characteristics of nuclear fuel cladding in high-temperature pressurized water[J]. Chinese Journal of Mechanical Engineering, 2023, 36(1): 101. doi: 10.1186/s10033-023-00931-4
|
[26] |
JIANG H, QU J, LU R Y, et al. Grid-to-rod flow-induced impact study for PWR fuel in reactor[J]. Progress in Nuclear Energy, 2016, 91: 355-361. doi: 10.1016/j.pnucene.2016.06.003
|
[27] |
LAZAREVIC S, LU R Y, FAVEDE C, et al. Investigating grid-to-rod fretting wear of nuclear fuel claddings using a unique autoclave fretting rig[J]. Wear, 2018, 412-413: 30-37. doi: 10.1016/j.wear.2018.06.011
|
[28] |
REED B, WANG R, LU R Y, et al. Autoclave grid-to-rod fretting wear evaluation of a candidate cladding coating for accident-tolerant fuel[J]. Wear, 2021, 466-467: 203578. doi: 10.1016/j.wear.2020.203578
|
[29] |
LAI P, GAO X C, TANG L C, et al. Effect of temperature on fretting wear behavior and mechanism of alloy 690 in water[J]. Nuclear Engineering and Design, 2018, 327: 51-60. doi: 10.1016/j.nucengdes.2017.12.007
|
[30] |
LIU X C, MING H L, ZHANG Z M, et al. Effects of temperature on fretting corrosion between alloy 690TT and 405 stainless steel in pure water[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1437-1448. doi: 10.1007/s40195-019-00929-9
|
[31] |
GUO X L, LAI P, TANG L C, et al. Time-dependent wear behavior of alloy 690 tubes fretted against 405 stainless steel in high-temperature argon and water[J]. Wear, 2018, 414-415: 194-201. doi: 10.1016/j.wear.2018.08.009
|
[32] |
GUO X L, LU J Q, LAI P, et al. Understanding the fretting corrosion mechanism of zirconium alloy exposed to high temperature high pressure water[J]. Corrosion Science, 2022, 202: 110300. doi: 10.1016/j.corsci.2022.110300
|
[33] |
MAROTO A J G, BORDONI R, VILLEGAS M, et al. Growth and characterization of oxide layers on zirconium alloys[J]. Journal of Nuclear Materials, 1996, 229: 79-92. doi: 10.1016/0022-3115(95)00233-2
|
[34] |
ZHAO X S, SHANG S L, LIU Z K, et al. Elastic properties of cubic, tetragonal and monoclinic ZrO2 from first-principles calculations[J]. Journal of Nuclear Materials, 2011, 415(1): 13-17. doi: 10.1016/j.jnucmat.2011.05.016
|
[35] |
ZHANG Y, CHEN H X, DUAN L, et al. A comparison study of the structural and mechanical properties of cubic, tetragonal, monoclinic, and three orthorhombic phases of ZrO2[J]. Journal of Alloys and Compounds, 2018, 749: 283-292. doi: 10.1016/j.jallcom.2018.03.253
|
[36] |
ZHANG S M, ZHANG X M. Toughness evaluation of hard coatings and thin films[J]. Thin Solid Films, 2012, 520(7): 2375-2389. doi: 10.1016/j.tsf.2011.09.036
|
[37] |
LI Z C, WANG Y X, CHENG X Y, et al. Continuously growing ultrathick CrN coating to achieve high load-bearing capacity and good tribological property[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2965-2975.
|
[38] |
ZHANG L, SHAO M H, WANG Z W, et al. Comparison of tribological properties of nitrided Ti-N modified layer and deposited TiN coatings on TA2 pure titanium[J]. Tribology International, 2022, 174: 107712. doi: 10.1016/j.triboint.2022.107712
|
[39] |
HE D Q, PU J B, LU Z B, et al. Simultaneously achieving superior mechanical and tribological properties in WC/a-C nanomultilayers via structural design and interfacial optimization[J]. Journal of Alloys and Compounds, 2017, 698: 420-432. doi: 10.1016/j.jallcom.2016.12.173
|
[40] |
XIN L, YANG B B, WANG Z H, et al. Microstructural evolution of subsurface on Inconel 690TT alloy subjected to fretting wear at elevated temperature[J]. Materials & Design, 2016, 104: 152-161.
|