Citation: | Li Ziyi, Wang Xiaomin, Wang Kai, Zhang Ruiqian, Yin Chunyu, Chen Huan, Shi Haojiang, Pei Jingyuan, Lu Yonghong. Research Progress and Technological Development Trend of Accident Tolerant Fuel[J]. Nuclear Power Engineering, 2024, 45(5): 155-164. doi: 10.13832/j.jnpe.2024.05.0155 |
[1] |
郑中成,郭立平,唐睿. 超临界水冷堆燃料包壳材料的辐照损伤研究进展[J]. 原子核物理评论,2017, 34(2): 211-218.
|
[2] |
CARMACK J, GOLDNER F, BRAGG-SITTON S M, et al. Overview of the U. S. DOE accident tolerant fuel development program: INL/CON-13-29288[R]. Idaho Falls: Idaho National Lab. , 2013.
|
[3] |
TERRANI K A. Accident tolerant fuel cladding development: promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30. doi: 10.1016/j.jnucmat.2017.12.043
|
[4] |
杨红艳,陈寰,张瑞谦,等. 核电耐事故锆包壳表面涂层研究进展[J]. 表面技术,2022, 51(7): 87-97.
|
[5] |
BISCHOFF J, DELAFOY C, VAUGLIN C, et al. AREVA NP’s enhanced accident-tolerant fuel developments: focus on Cr-coated M5 cladding[J]. Nuclear Engineering and Technology, 2018, 50(2): 223-228. doi: 10.1016/j.net.2017.12.004
|
[6] |
LYONS J L, PARTEZANA J, BYERS W A, et al. Westinghouse chromium-coated zirconium alloy cladding development and testing[C]. Proceedings of Topfuel 2019, Seattle, United States of America: 2019. https://www.ans.org/pubs/proceedings/article-47064/.
|
[7] |
STUCKERT J, AUSTREGESILO H, HOLLANDS T H, et al. IAEA fumac benchmark on KIT bundle test cora-15[C]. Proceedings of Topfuel 2018, Prague, Czech Republic: 2018.
|
[8] |
严俊,廖业宏,彭振驯,等. Cr涂层锆合金事故容错燃料包壳材料研究进展[J]. 表面技术,2023, 52(12): 206-224.
|
[9] |
中国广核集团. 中广核开始国内ATF燃料入堆辐照测试工作[EB/OL]. (2019-01-22)[2023-12-21]. http://www.cgnpc.com.cn/cgn/c100944/2019-01/22/content_916216b8da314c03b1785b9d798c163d.shtml.
|
[10] |
WEI T G, ZHANG R Q, YANG H Y, et al. Microstructure, corrosion resistance and oxidation behavior of Cr-coatings on Zircaloy-4 prepared by vacuum arc plasma deposition[J]. Corrosion Science, 2019, 158: 108077. doi: 10.1016/j.corsci.2019.06.029
|
[11] |
KIM H G, KIM I H, JUNG Y I, et al. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating[J]. Journal of Nuclear Materials, 2015, 465: 531-539. doi: 10.1016/j.jnucmat.2015.06.030
|
[12] |
YEOM H, DABNEY T, JOHNSON G, et al. Improving deposition efficiency in cold spraying chromium coatings by powder annealing[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(5-8): 1373-1382. doi: 10.1007/s00170-018-2784-1
|
[13] |
DELAFOY C, BISCHOFF J, LAROCQUE J, et al. Benefits of framatome’s E-ATF evolutionary solution: Cr-coated cladding with Cr2O3-doped fuel[C]. Proceedings of Topfuel 2018, Prague, Czech Republic: 2018.
|
[14] |
FIELD K G, HU X X, LITTRELL K C, et al. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys[J]. Journal of Nuclear Materials, 2015, 465: 746-755. doi: 10.1016/j.jnucmat.2015.06.023
|
[15] |
AYDOGAN E, WEAVER J S, MALOY S A, et al. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations[J]. Journal of Nuclear Materials, 2018, 503: 250-262. doi: 10.1016/j.jnucmat.2018.03.002
|
[16] |
GAMBLE K A, HALES J D, BARANI T, et al. Behavior of U3Si2 fuel and FeCrAl cladding under normal operating and accident reactor conditions: INL/EXT-16-40059[R]. Idaho Falls: Idaho National Laboratory, 2016.
|
[17] |
LIN Y P, FAWCETT R M, DESILVA S S, et al. Path towards industrialization of enhanced accident tolerant fuel[C]. Proceedings of Topfuel 2018, Prague, Czech Republic: 2018.
|
[18] |
TERRANI K A, PINT B A, KIM Y J, et al. Uniform corrosion of FeCrAl alloys in LWR coolant environments[J]. Journal of Nuclear Materials, 2016, 479: 36-47. doi: 10.1016/j.jnucmat.2016.06.047
|
[19] |
SWARTZ M M, BYERS W A, LOJEK J, et al. Westinghouse eVinciTM heat pipe micro reactor technology development[C]. Proceedings of the 28th International Conference on Nuclear Engineering. New York, United States of America, ASME, 2021.
|
[20] |
ZHANG J S. A review of steel corrosion by liquid lead and lead–bismuth[J]. Corrosion Science, 2009, 51(6): 1207-1227. doi: 10.1016/j.corsci.2009.03.013
|
[21] |
POPOVIC M P, CHEN K, SHEN H, et al. A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic[J]. Acta Materialia, 2018, 151: 301-309. doi: 10.1016/j.actamat.2018.03.041
|
[22] |
YAMAMOTO Y, FIELD K, SNEAD L. Optimization of nuclear grade FeCrAl fuel cladding for light water reactors[C]. Michigan, United States of America: Proceedings of Oak Ridge National Laboratory IAEA Technical Meeting, 2015.
|
[23] |
TERRANI K A, PARISH C M, SHIN D, et al. Protection of zirconium by alumina- and chromia-forming iron alloys under high-temperature steam exposure[J]. Journal of Nuclear Materials, 2013, 438(1-3): 64-71. doi: 10.1016/j.jnucmat.2013.03.006
|
[24] |
TERRANI K A, ZINKLE S J, SNEAD L L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J]. Journal of Nuclear Materials, 2014, 448(1-3): 420-435. doi: 10.1016/j.jnucmat.2013.06.041
|
[25] |
YAMAMOTO Y, YANG Y, FIELD K G, et al. Letter report documenting progress of second generation ATF FeCrAl alloy fabrication: ORNL/LTR-2014/219[R]. Oak Ridge: Oak Ridge National Lab. , 2014.
|
[26] |
BACHHAV M, ROBERT ODETTE G, MARQUIS E A. Microstructural changes in a neutron-irradiated Fe–15at. %Cr alloy[J]. Journal of Nuclear Materials, 2014, 454(1-3): 381-386. doi: 10.1016/j.jnucmat.2014.08.026
|
[27] |
REBAK R B. Accident-tolerant materials for light water reactor fuels[M]. Amsterdam: Elsevier, 2020:143-156.
|
[28] |
DECK C P, JACOBSEN G M, SHEEDER J, et al. Characterization of SiC–SiC composites for accident tolerant fuel cladding[J]. Journal of Nuclear Materials, 2015, 466: 667-681. doi: 10.1016/j.jnucmat.2015.08.020
|
[29] |
伍浩松,郭志锋. 法马通耐事故燃料在美国试验堆中进行辐照试验[J]. 国外核新闻,2018(7): 23.
|
[30] |
QIU B W, WANG J, DENG Y B, et al. A review on thermohydraulic and mechanical-physical properties of SiC, FeCrAl and Ti3SiC2 for ATF cladding[J]. Nuclear Engineering and Technology, 2020, 52(1): 1-13. doi: 10.1016/j.net.2019.07.030
|
[31] |
XU P, LAHODA E J, LYONS J, et al. Status update on Westinghouse sic composite cladding fuel development[C]. Prague, Czech Republic: Proceedings of Topfuel 2018, 2018.
|
[32] |
GERINGER J W, PETRIE C, JAMES A, et al. HFIR SiC-SiC composite clad tube bowing test: pre-irradiation characterization: ORNL/SPR-2021/2100[R]. Springfield: National Technical Information Service, 2021.
|
[33] |
World Nuclear News, General Atomics, Framatome join for fuel channel work[EB/OL]. (2020-02-21)[2023-12-26]. https://www.world-nuclear-news.org/Articles/GA-Framatome-team-up-on-fuel-channel-development.
|
[34] |
KOYANAGI T, KATOH Y, NOZAWA T. Design and strategy for next-generation silicon carbide composites for nuclear energy[J]. Journal of Nuclear Materials, 2020, 540: 152375. doi: 10.1016/j.jnucmat.2020.152375
|
[35] |
FIELD K G, SNEAD M A, YAMAMOTO Y, et al. Handbook on the material properties of FeCrAl alloys for nuclear power production applications (FY18 Version: Revision 1): ORNL/SPR-2018/905[R]. Oak Ridge: Oak Ridge National Laboratory, 2018.
|
[36] |
DOYLE P, SUN K C, SNEAD L, et al. The effects of neutron and ionizing irradiation on the aqueous corrosion of SiC[J]. Journal of Nuclear Materials, 2020, 536: 152190. doi: 10.1016/j.jnucmat.2020.152190
|
[37] |
尚新渊,张爱民. 碳化硅复合材料包壳燃料棒在LOCA事故中的特性研究[J]. 核技术,2019, 42(8): 080601.
|
[38] |
COZZO C, RAHMAN S. SiC cladding thermal conductivity requirements for normal operation and LOCA conditions[J]. Progress in Nuclear Energy, 2018, 106: 278-283. doi: 10.1016/j.pnucene.2018.03.016
|
[39] |
LI M, ZHOU X B, YANG H, et al. The critical issues of SiC materials for future nuclear systems[J]. Scripta Materialia, 2018, 143: 149-153. doi: 10.1016/j.scriptamat.2017.03.001
|
[40] |
刘俊凯,张新虎,恽迪. 事故容错燃料包壳候选材料的研究现状及展望[J]. 材料导报,2018, 32(11): 1757-1778.
|
[41] |
SHARMA A S, FITRIANI P, YOON D H. Fabrication of SiCf/SiC and integrated assemblies for nuclear reactor applications[J]. Ceramics International, 2017, 43(18): 17211-17215. doi: 10.1016/j.ceramint.2017.09.126
|
[42] |
KATOH Y, OZAWA K, SHIH C, et al. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects[J]. Journal of Nuclear Materials, 2014, 448(1-3): 448-476. doi: 10.1016/j.jnucmat.2013.06.040
|
[43] |
ENS. Framatome’s GAIA EATF technology completes its first-ever fuel cycle[EB/OL]. (2021-02-04)[2023-12-25]. https://www.euronuclear.org/news/framatome-gaia-eatf-nuclear-fuel/.
|
[44] |
Framatome. Framatome’s GAIA Enhanced Accident Tolerant Fuel completes first-ever fuel cycle[EB/OL]. (2021-02-02)[2023-12-25]. https://www.framatome.com/medias/framatomes-gaia-enhanced-accident-tolerant-fuel-completes-first-ever-fuel-cycle/?lang=en.
|
[45] |
伍浩松,孟雨晨. 法马通先进燃料代码获得美核管会批准[J]. 国外核新闻,2023(5): 18.
|
[46] |
伍浩松,杨鹏. 法马通耐事故燃料组件在美机组完成首个换料周期辐照测试[J]. 国外核新闻,2023(9): 17.
|
[47] |
Nuclear Newswire. Framatome receives NRC approval for transport of LEU+ fuel assemblies[EB/OL]. (2022-02-23)[2023-12-25]. https://www.ans.org/news/article-3690/framatome-receives-nrc-approval-for-transport-of-leu-fuel-assemblies/.
|
[48] |
Westinghouse. Westinghouse EnCore® fuel[EB/OL]. (2017-06-12)[2023-12-25]. https://info.westinghousenuclear.com/blog/westinghouse-encore-fuel.
|
[49] |
Westinghouse. Accident tolerant fuel: westinghouse ADOPTTM fuel achieves regulatory approval, moves closer to U. S. deployment[EB/OL]. (2023-03-14)[2023-12-25]. https://info.westinghousenuclear.com/news/adopt-nrc-approval.
|
[50] |
JOHNSON K D, RAFTERY A M, LOPES D A, et al. Fabrication and microstructural analysis of UN-U3Si2 composites for accident tolerant fuel applications[J]. Journal of Nuclear Materials, 2016, 477: 18-23. doi: 10.1016/j.jnucmat.2016.05.004
|
[51] |
LOPES D A, UYGUR S, JOHNSON K. Degradation of UN and UN–U3Si2 pellets in steam environment[J]. Journal of Nuclear Science and Technology, 2017, 54(4): 405-413. doi: 10.1080/00223131.2016.1274689
|
[52] |
HARP J M, LESSING P A, HOGGAN R E. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation[J]. Journal of Nuclear Materials, 2015, 466: 728-738. doi: 10.1016/j.jnucmat.2015.06.027
|
[53] |
HOGGAN R E, TOLMAN K R, CAPPIA F, et al. Grain size and phase purity characterization of U3Si2 fuel pellets[J]. Journal of Nuclear Materials, 2018, 512: 199-213. doi: 10.1016/j.jnucmat.2018.10.011
|
[54] |
LAHODA E J, AVALI R, BOYLAN F A. Program management plan EnCore® accident tolerant fuel (ATF) program: GATFT-LTR-19-013[R]. Cranberry Township: Westinghouse Electric Company LLC, 2019.
|
[55] |
NRC. Longer term accident tolerant fuel technologies[EB/OL]. (2024-06-13)[2024-08-27]. https://www.nrc.gov/reactors/power/atf/technologies/longer-term.html.
|
[56] |
MISHCHENKO Y, JOHNSON K D, JÄDERNÄS D, et al. Uranium nitride advanced fuel: an evaluation of the oxidation resistance of coated and doped grains[J]. Journal of Nuclear Materials, 2021, 556: 153249. doi: 10.1016/j.jnucmat.2021.153249
|
[57] |
HE L F, KHAFIZOV M, JIANG C, et al. Phase and defect evolution in uranium-nitrogen-oxygen system under irradiation[J]. Acta Materialia, 2021, 208: 116778. doi: 10.1016/j.actamat.2021.116778
|
[58] |
GONG B W, KARDOULAKI E, YANG K, et al. UN and U3Si2 composites densified by spark plasma sintering for accident-tolerant fuels[J]. Ceramics International, 2022, 48(8): 10762-10769. doi: 10.1016/j.ceramint.2021.12.292
|
[59] |
HANSON W A, CAPPIA F, WHITE J T, et al. Post-irradiation examination of low burnup U3Si5 and UN-U3Si5 composite fuels[J]. Journal of Nuclear Materials, 2023, 578: 154346. doi: 10.1016/j.jnucmat.2023.154346
|
[60] |
YANG K, KARDOULAKI E, ZHAO D, et al. Uranium nitride (UN) pellets with controllable microstructure and phase – fabrication by spark plasma sintering and their thermal-mechanical and oxidation properties[J]. Journal of Nuclear Materials, 2021, 557: 153272. doi: 10.1016/j.jnucmat.2021.153272
|
[61] |
TERRANI K A, TRAMMELL M P, KIGGANS J O, et al. UN TRISO compaction in SiC for FCM fuel irradiations: ORNL/LTR-2016/702[R]. Oak Ridge: Oak Ridge National Lab. , 2016.
|
[62] |
LEE H G, KIM D, LEE S J, et al. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites[J]. Nuclear Engineering and Design, 2017, 311: 9-15. doi: 10.1016/j.nucengdes.2016.11.005
|
[63] |
葛维维,杨金凤. 核安全峰会·聚焦微堆低浓化[J]. 中国核工业,2016(4): 22.
|
[64] |
王兴春,张焰. 荷兰即将启动微堆MMR燃料辐照测试[J]. 国外核新闻,2021(7): 19.
|
[65] |
伍浩松,李晨曦. 美FCM燃料中试制造设施正式投运[J]. 国外核新闻,2022(9): 19.
|
[66] |
伍浩松,戴定. 加成功制造首批TRISO燃料[J]. 国外核新闻,2021(5): 19.
|
[67] |
Nuclear Newswire. Framatome and USNC team up to produce TRISO fuel at framatome facility[EB/OL]. (2023-11-29)[2023-12-25]. https://www.ans.org/news/article-5571/framatome-and-usnc-team-up-to-produce-triso-fuel-at-framatome-facility/.
|
[68] |
LINDEMER T B, VOIT S L, SILVA C M, et al. Carbothermic synthesis of 820 μm uranium nitride kernels: literature review, thermodynamics, analysis, and related experiments[J]. Journal of Nuclear Materials, 2014, 448(1-3): 404-411. doi: 10.1016/j.jnucmat.2013.10.036
|
[69] |
BROWN N R, HERNANDEZ R, NELSON A T. High volume packing fraction TRISO-based fuel in light water reactors[J]. Progress in Nuclear Energy, 2022, 146: 104151. doi: 10.1016/j.pnucene.2022.104151
|
[70] |
李维杰. 压水堆应用高丰度低浓铀燃料铀浓缩关键环节研究建议[J]. 当代化工研究,2023(4): 130-132.
|
[71] |
EATF. Framatome’s EATF program[EB/OL]. (2018-01-17)[2023-12-25]. https://nextevolutionfuel.com/framatome-eatf-program/.
|
[72] |
Framatome, Framatome EATF[EB/OL]. (2023-07-31)[2023-12-25]. https://nextevolutionfuel.com/.
|
[73] |
EATF. Fuel for tomorrow[EB/OL]. (2019-06-13)[2023-12-25]. https://nextevolutionfuel.com/2019/06/fuel-for-tomorrow/.
|