Advance Search
Volume 45 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
You Ersheng, Zhang Ting, Xing Dianchuan, Xu Jianjun, Yan Xiao. Research on System Performance and Engineering Application of Stirling Power Conversion Technology[J]. Nuclear Power Engineering, 2024, 45(5): 269-276. doi: 10.13832/j.jnpe.2024.05.0269
Citation: You Ersheng, Zhang Ting, Xing Dianchuan, Xu Jianjun, Yan Xiao. Research on System Performance and Engineering Application of Stirling Power Conversion Technology[J]. Nuclear Power Engineering, 2024, 45(5): 269-276. doi: 10.13832/j.jnpe.2024.05.0269

Research on System Performance and Engineering Application of Stirling Power Conversion Technology

doi: 10.13832/j.jnpe.2024.05.0269
  • Received Date: 2023-10-22
  • Rev Recd Date: 2024-08-02
  • Publish Date: 2024-10-14
  • In order to meet the needs of small modular nuclear power plant for the type selection, demonstration and overall evaluation of new power conversion technology, this study focuses on the free piston Stirling power conversion technology and the key technical problems in engineering application, comparing and analyzing the typical application concepts of the hundred-watt isotope-Stirling power supply system, the kilowatt nuclear reactor-Stirling power supply system, and the ten-kilowatt solar power-Stirling power supply system. The performance estimation models of two key parameters, output power and conversion efficiency, of Stirling power conversion system are given. The research results show that the conversion efficiency of Stirling engine is able to reach about 60% of the Carnot cycle, while the output power is generally below tens of kilowatts. For more power generation through the modular configuration of multiple units, the coupling structure and heat transfer process will be the key factors affecting the performance of Stirling engine. The estimation model and analysis results proposed in the paper are useful to support the performance evaluation and engineering application of Stirling power conversion technology.

     

  • loading
  • [1]
    TORO C, LIOR N. Analysis and comparison of solar-heat driven Stirling, Brayton and Rankine cycles for space power generation[J]. Energy, 2017, 120: 549-564. doi: 10.1016/j.energy.2016.11.104
    [2]
    周寿明, 吴红星, 肖翀, 等. 自由活塞式斯特林直线发电机技术综述[J]. 微电机,2013, 46(12): 7-16. doi: 10.3969/j.issn.1009-2366.2021.06.011
    [3]
    MASON L S, SCHREIBER J G. A historical review of Brayton and Stirling power conversion technologies for space applications: NASA/TM-2007-214976[R]. Cleveland: NASA, 2007.
    [4]
    SCHREIBER J G, THIEME L G. GRC supporting technology for NASA’s advanced Stirling radioisotope generator (ASRG)[J]. AIP Conference Proceedings, 2008, 969(1): 582-592.
    [5]
    WILSON S D, SCHIFER N, CASCIANI M R. Small Stirling technology exploration power for future space science missions[C]//Proceedings of 2019 IEEE Aerospace Conference. Big Sky, MT: IEEE, 2019.
    [6]
    HIBBARD K E, MASON L S, NDU O, et al. Stirling to flight initiative[C]//Proceedings of 2016 IEEE Aerospace Conference. Big Sky, MT: IEEE, 2016.
    [7]
    骆成栋,罗雨微,杨伟杰,等. 美国空间核动力斯特林电源系统技术发展分析[J]. 国际太空,2021(6): 44-48.
    [8]
    冶文莲,孙述泽,陈鹏帆,等. 空间自由活塞斯特林发动机研究进展[J]. 真空与低温,2021, 27(5): 457-466. doi: 10.3969/j.issn.1006-7086.2021.05.008
    [9]
    游尔胜,张廷,张友佳,等. 斯特林动力转换技术在微型核装置中的应用分析[J]. 科学技术创新,2023(9): 58-62. doi: 10.3969/j.issn.1673-1328.2023.09.016
    [10]
    夏彦,李健,周钦,等. 斯特林热电一体化空间堆电源研究进展[J]. 中国基础科学,2023, 25(1): 46-54,59. doi: 10.3969/j.issn.1009-2412.2023.01.006
    [11]
    BEALE WT. The development of Stirling engines at Sunpower, Inc. [C]//Proceedings of the 2nd International Stirling Engine Conference. Shanghai, 1984.
    [12]
    SCHREIBER J G. RE-1000 free – piston Stirling engine update[C]//Proceedings of the 20th Intersociety Energy Conversion Engineering Conference, Miami Beach, 1985.
    [13]
    ROSS B, DUDENHOEFER J E. Stirling machine operating experience[C]//Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Boston, 1991.
    [14]
    DOCHAT G R. Development of a small, free-piston stirling engine, linear-alternator system for solar thermal electric power applications: AE Technical Paper 810457[R]. Pennsylvania, U.S.: SAE International, 1981.
    [15]
    SLABY J G. Overview of free-piston Stirling technology at the NASA Lewis research center[C]//Proceedings of the 23rd Automotive Technology Development Contractors’ Coordination Meeting, Dearborn, 1985.
    [16]
    DOCHAT G. SPDE/SPRE final summary report: NASA Contractor Report 187086[R]. Latham: NASA, 1993.
    [17]
    WOOD J G, LANE N. Development of the Sunpower 35 We free-piston Stirling convertor[J]. AIP Conference Proceedings, 2005, 746(1): 682-687.
    [18]
    WALKER G. Stirling engines[M]. New York: Oxford University Press, 1980: 1-9.
    [19]
    CURZON F L, AHLBORN B. Efficiency of a Carnot engine at maximum power output[J]. American Journal of Physics, 1975, 43(1): 22-24. doi: 10.1119/1.10023
    [20]
    LEWANDOWSKI E J, JOHNSON P K. Stirling system modeling for space nuclear power systems: NASA/CR—2008-215146[R]. Cleveland: NASA, 2008.
    [21]
    GIBSON M A, POSTON D I, MCCLURE P, et al. Kilopower reactor using Stirling technology (KRUSTY) nuclear ground test results and lessons learned: NASA/TM—2018-219941[R]. Cleveland: NASA, 2018.
    [22]
    WONG W A, CORNELL P A. Advanced Stirling convertor (ASC) technology maturation in preparation for flight: NASA/TM—2012-217207[R]. Cleveland: NASA, 2012.
    [23]
    ORITI S M. Performance measurement of advanced Stirling convertors (ASC-E3): NASA/TM—2013-216564[R]. Cleveland: NASA, 2013.
    [24]
    HAMLEY J A, MCCALLUM P W, SANDIFER II C E, et al. NASA’s radioisotope power systems-plans[R]. Cleveland: NASA, 2015.
    [25]
    GENG S M, MASON L S, DYSON R W, et al. Overview of multi-kilowatt free-piston Stirling power conversion research at Glenn research center: NASA/TM—2008-215061[R]. Cleveland: NASA, 2008.
    [26]
    BRIGGS M H, GENG S M, PEARSON J B, et al. Summary of test results from a 1 kWe – class free-piston Stirling power convertor integrated with a pumped NaK loop[C]//Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Nashville: AIAA, 2010.
    [27]
    GIBSON M A, OLESON S R, POSTON D I, et al. NASA's Kilopower reactor development and the path to higher power missions: NASA/TM—2017-219467[R]. Gleveland: NASA, 2017.
    [28]
    GIBSON M A, BRIGGS M H, SANZI J L, et al. Heat pipe powered Stirling conversion for the demonstration using flattop fission (DUFF) test: NASA/TM—2013-216542[R]. Cleveland: NASA, 2013.
    [29]
    LUKEFAHR B. Utility – scale solar generation technologies: coming of age[C]//Proceedings of the Gulf Coast Power Association Fall Conference, Austin, Texas, U.S., 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article views (42) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return