Advance Search
Volume 45 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
Qiao Yaxin, Wu Xiaofei, Hou Long. Research on Nuclear Data Target Accuracy Assessment Based on Subspace Method[J]. Nuclear Power Engineering, 2024, 45(6): 39-46. doi: 10.13832/j.jnpe.2024.06.0039
Citation: Qiao Yaxin, Wu Xiaofei, Hou Long. Research on Nuclear Data Target Accuracy Assessment Based on Subspace Method[J]. Nuclear Power Engineering, 2024, 45(6): 39-46. doi: 10.13832/j.jnpe.2024.06.0039

Research on Nuclear Data Target Accuracy Assessment Based on Subspace Method

doi: 10.13832/j.jnpe.2024.06.0039
  • Received Date: 2023-12-30
  • Rev Recd Date: 2024-01-30
  • Publish Date: 2024-12-17
  • According to the target uncertainty limit of reactor physics response calculation, target accuracy assessment solves a problem which identifies the demands for nuclear data uncertainties, which is of great significance for guiding the research direction of nuclear data and improving the economy and safety of reactors. Target accuracy assessment is a nonlinear constrained optimization problem in mathematics. Due to the ultra-large amount of nuclear data, solving the optimization problem in full-space is impossible. Subspace method is an efficient dimensionality reduction method. Through matrix transformation defined by subspace, a high-dimensional problem can be transformed into a low-dimensional problem, while the high-dimensional information is mostly retained, and the stability of numerical calculation is enhanced. Research on ZPPR-9 nuclear data target accuracy assessment based on subspace method shows that, with the 0.3% target uncertainty limit of effective multiplication factor, computational dimension can be reduced from 1170 to 71. The numerical method presented in this paper can be used in future target accuracy assessment calculations.

     

  • loading
  • [1]
    汤涛,周涛. 不确定性量化的高精度数值方法和理论[J]. 中国科学: 数学,2015, 45(7): 891-928.
    [2]
    SULLIVAN T J. Introduction to uncertainty quantification[M]. Cham: Springer, 2015: 1-6.
    [3]
    SALVATORES M, JACQMIN R. International evaluation co-operation volume 26: Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations[R]. Vienna: OECD/NEA, 2008.
    [4]
    ALIBERTI G, PALMIOTTI G, SALVATORES M, et al. Nuclear data sensitivity, uncertainty and target accuracy assessment for future nuclear systems[J]. Annals of Nuclear Energy, 2006, 33(8): 700-733. doi: 10.1016/j.anucene.2006.02.003
    [5]
    USACHEV L N, BOBKOV Y G. Planning an optimum set of microscopic experiments and evaluation to obtain a given accuracy in reactor parameter calculations: INDC(CCP)-19/U[R]. Vienna: INDC, 1972.
    [6]
    刘勇,曹良志,吴宏春,等. 核数据敏感性与不确定性分析及其在目标精度评估中的应用[J]. 原子能科学技术,2019, 53(1): 86-93. doi: 10.7538/yzk.2018.youxian.0136
    [7]
    朱帅涛. 快能谱反应堆多群核数据的调整与精度评估方法研究[D]. 北京: 华北电力大学(北京),2020.
    [8]
    DENSMORE J D, MCKINNEY G W, HENDRICKS J S. Correction to the MCNP perturbation feature for cross-section dependent tallies: LA-13374[R]. Los Alamos, New Mexico: Los Alamos National Laboratory, 1997.
    [9]
    KIEDROWSKI B C. MCNP6.1 k-eigenvalue sensitivity capability: a user’s guide: LA-UR-13-22251[R]. Los Alamos: Los Alamos National Laboratory, 2013.
    [10]
    MACFARLANE R, MUIR D W, BOICOURT R M, et al. The NJOY nuclear data processing system, version 2016: LA-UR-17-20093[R]. Los Alamos: Los Alamos National Laboratory, 2017.
    [11]
    RUSSI T M. Uncertainty quantification with experimental data and complex system models[D]. Berkeley: University of California, Berkeley, 2010.
    [12]
    CONSTANTINE P G, DOW E, WANG Q Q. Active subspace methods in theory and practice: applications to Kriging surfaces[J]. SIAM Journal on Scientific Computing, 2014, 36(4): A1500-A1524. doi: 10.1137/130916138
    [13]
    ABDEL-KHALIK H S. Adaptive core simulation[D]. Raleigh: North Carolina State University, 2004.
    [14]
    CONSTANTINE P G. Active subspaces: emerging ideas for dimension reduction in parameter studies[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2015: 21-44.
    [15]
    HU X Z, CHEN X Q, ZHAO Y, et al. Active subspace approach to reliability and safety assessments of small satellite separation[J]. Acta Astronautica, 2017, 131: 159-165. doi: 10.1016/j.actaastro.2016.10.042
    [16]
    LI J C, CAI J S, QU K. Surrogate-based aerodynamic shape optimization with the active subspace method[J]. Structural and Multidisciplinary Optimization, 2019, 59(2): 403-419. doi: 10.1007/s00158-018-2073-5
    [17]
    ABDEL-KHALIK H S, BANG Y, WANG C J. Overview of hybrid subspace methods for uncertainty quantification, sensitivity analysis[J]. Annals of Nuclear Energy, 2013, 52: 28-46. doi: 10.1016/j.anucene.2012.07.020
    [18]
    LEWIS A, SMITH R, WILLIAMS B. Gradient free active subspace construction using Morris screening elementary effects[J]. Computers & Mathematics with Applications, 2016, 72(6): 1603-1615.
    [19]
    KHUWAILEH B A, ABDEL-KHALIK H S. Subspace-based inverse uncertainty quantification for nuclear data assessment[J]. Nuclear Data Sheets, 2015, 123: 57-61. doi: 10.1016/j.nds.2014.12.010
    [20]
    HALKO N, MARTINSSON P G, TROPP J A. Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions[J]. SIAM Review, 2011, 53(2): 217-288. doi: 10.1137/090771806
    [21]
    LUO W, LI B. Combining eigenvalues and variation of eigenvectors for order determination[J]. Biometrika, 2016, 103(4): 875-887. doi: 10.1093/biomet/asw051
    [22]
    JOLLIFFE I T. Principal component analysis[M]. 2nd ed. New York: Springer, 2002: 10-28.
    [23]
    ISHIKAWA M, IKEGAMI T, SANDA T. ZPPR benchmarks for large LMFBR core physics from JUPITER cooperative program between United States and Japan[J]. Nuclear Science and Engineering, 2014, 178(3): 335-349. doi: 10.13182/NSE14-9
    [24]
    IWAI T, SUGINO K, ISHIKAWA M. Development of the ZPPR-9 core benchmark problem: PNC TN9410 98-079[R]. Japan: Power Reactor and Nuclear Fuel Development Corporation, 1998.
    [25]
    SALVATORES M, PALMIOTTI G, ALIBERTI G, et al. Methods and issues for the combined use of integral experiments and covariance data: NEA-NSC-WPEC-DOC-2013-445[R]. Vienna: OECD/NEA, 2013.
    [26]
    TADA K, YAMAMOTO A, KUNIEDA S, et al. Nuclear data processing code FRENDY version 2: JAEA-Data/Code 2022-009[R]. Japan: Japan Atomic Energy Agency, 2023.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (20) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return