Citation: | Qiao Yaxin, Wu Xiaofei, Hou Long. Research on Nuclear Data Target Accuracy Assessment Based on Subspace Method[J]. Nuclear Power Engineering, 2024, 45(6): 39-46. doi: 10.13832/j.jnpe.2024.06.0039 |
[1] |
汤涛,周涛. 不确定性量化的高精度数值方法和理论[J]. 中国科学: 数学,2015, 45(7): 891-928.
|
[2] |
SULLIVAN T J. Introduction to uncertainty quantification[M]. Cham: Springer, 2015: 1-6.
|
[3] |
SALVATORES M, JACQMIN R. International evaluation co-operation volume 26: Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations[R]. Vienna: OECD/NEA, 2008.
|
[4] |
ALIBERTI G, PALMIOTTI G, SALVATORES M, et al. Nuclear data sensitivity, uncertainty and target accuracy assessment for future nuclear systems[J]. Annals of Nuclear Energy, 2006, 33(8): 700-733. doi: 10.1016/j.anucene.2006.02.003
|
[5] |
USACHEV L N, BOBKOV Y G. Planning an optimum set of microscopic experiments and evaluation to obtain a given accuracy in reactor parameter calculations: INDC(CCP)-19/U[R]. Vienna: INDC, 1972.
|
[6] |
刘勇,曹良志,吴宏春,等. 核数据敏感性与不确定性分析及其在目标精度评估中的应用[J]. 原子能科学技术,2019, 53(1): 86-93. doi: 10.7538/yzk.2018.youxian.0136
|
[7] |
朱帅涛. 快能谱反应堆多群核数据的调整与精度评估方法研究[D]. 北京: 华北电力大学(北京),2020.
|
[8] |
DENSMORE J D, MCKINNEY G W, HENDRICKS J S. Correction to the MCNP perturbation feature for cross-section dependent tallies: LA-13374[R]. Los Alamos, New Mexico: Los Alamos National Laboratory, 1997.
|
[9] |
KIEDROWSKI B C. MCNP6.1 k-eigenvalue sensitivity capability: a user’s guide: LA-UR-13-22251[R]. Los Alamos: Los Alamos National Laboratory, 2013.
|
[10] |
MACFARLANE R, MUIR D W, BOICOURT R M, et al. The NJOY nuclear data processing system, version 2016: LA-UR-17-20093[R]. Los Alamos: Los Alamos National Laboratory, 2017.
|
[11] |
RUSSI T M. Uncertainty quantification with experimental data and complex system models[D]. Berkeley: University of California, Berkeley, 2010.
|
[12] |
CONSTANTINE P G, DOW E, WANG Q Q. Active subspace methods in theory and practice: applications to Kriging surfaces[J]. SIAM Journal on Scientific Computing, 2014, 36(4): A1500-A1524. doi: 10.1137/130916138
|
[13] |
ABDEL-KHALIK H S. Adaptive core simulation[D]. Raleigh: North Carolina State University, 2004.
|
[14] |
CONSTANTINE P G. Active subspaces: emerging ideas for dimension reduction in parameter studies[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2015: 21-44.
|
[15] |
HU X Z, CHEN X Q, ZHAO Y, et al. Active subspace approach to reliability and safety assessments of small satellite separation[J]. Acta Astronautica, 2017, 131: 159-165. doi: 10.1016/j.actaastro.2016.10.042
|
[16] |
LI J C, CAI J S, QU K. Surrogate-based aerodynamic shape optimization with the active subspace method[J]. Structural and Multidisciplinary Optimization, 2019, 59(2): 403-419. doi: 10.1007/s00158-018-2073-5
|
[17] |
ABDEL-KHALIK H S, BANG Y, WANG C J. Overview of hybrid subspace methods for uncertainty quantification, sensitivity analysis[J]. Annals of Nuclear Energy, 2013, 52: 28-46. doi: 10.1016/j.anucene.2012.07.020
|
[18] |
LEWIS A, SMITH R, WILLIAMS B. Gradient free active subspace construction using Morris screening elementary effects[J]. Computers & Mathematics with Applications, 2016, 72(6): 1603-1615.
|
[19] |
KHUWAILEH B A, ABDEL-KHALIK H S. Subspace-based inverse uncertainty quantification for nuclear data assessment[J]. Nuclear Data Sheets, 2015, 123: 57-61. doi: 10.1016/j.nds.2014.12.010
|
[20] |
HALKO N, MARTINSSON P G, TROPP J A. Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions[J]. SIAM Review, 2011, 53(2): 217-288. doi: 10.1137/090771806
|
[21] |
LUO W, LI B. Combining eigenvalues and variation of eigenvectors for order determination[J]. Biometrika, 2016, 103(4): 875-887. doi: 10.1093/biomet/asw051
|
[22] |
JOLLIFFE I T. Principal component analysis[M]. 2nd ed. New York: Springer, 2002: 10-28.
|
[23] |
ISHIKAWA M, IKEGAMI T, SANDA T. ZPPR benchmarks for large LMFBR core physics from JUPITER cooperative program between United States and Japan[J]. Nuclear Science and Engineering, 2014, 178(3): 335-349. doi: 10.13182/NSE14-9
|
[24] |
IWAI T, SUGINO K, ISHIKAWA M. Development of the ZPPR-9 core benchmark problem: PNC TN9410 98-079[R]. Japan: Power Reactor and Nuclear Fuel Development Corporation, 1998.
|
[25] |
SALVATORES M, PALMIOTTI G, ALIBERTI G, et al. Methods and issues for the combined use of integral experiments and covariance data: NEA-NSC-WPEC-DOC-2013-445[R]. Vienna: OECD/NEA, 2013.
|
[26] |
TADA K, YAMAMOTO A, KUNIEDA S, et al. Nuclear data processing code FRENDY version 2: JAEA-Data/Code 2022-009[R]. Japan: Japan Atomic Energy Agency, 2023.
|