Citation: | Li Haozhe, Song Meiqi, Liu Xiaojing. Prediction and Analysis of Heat Transfer Characteristics of Supercritical Fluids Based on Interpretable Machine Learning[J]. Nuclear Power Engineering, 2024, 45(6): 63-74. doi: 10.13832/j.jnpe.2024.06.0063 |
[1] |
XIE G N, XU X X, LEI X L, et al. Heat transfer behaviors of some supercritical fluids: a review[J]. Chinese Journal of Aeronautics, 2022, 35(1): 290-306. doi: 10.1016/j.cja.2020.12.022
|
[2] |
SWENSON H S, CARVER J R, KAKARALA C R. Heat transfer to supercritical water in smooth-bore tubes[J]. Journal of Heat Transfer, 1965, 87(4): 477-483. doi: 10.1115/1.3689139
|
[3] |
PETUKHOV B S. Heat transfer and friction in turbulent pipe flow with variable physical properties[J]. Advances in Heat Transfer, 1970, 6: 503-564.
|
[4] |
KIM J K, JEON H K, LEE J S. Wall temperature measurement and heat transfer correlation of turbulent supercritical carbon dioxide flow in vertical circular/non-circular tubes[J]. Nuclear Engineering and Design, 2007, 237(15-17): 1795-1802. doi: 10.1016/j.nucengdes.2007.02.017
|
[5] |
JACKSON J D. An semi-empirical model of turbulent convective heat transfer to fluids at supercritical pressure[C]//Proceedings of the 16th International Conference on Nuclear Engineering. Orlando: ASME, 2008: 911-921.
|
[6] |
FANG X D, XU Y. Modified heat transfer equation for in-tube supercritical CO2 cooling[J]. Applied Thermal Engineering, 2011, 31(14-15): 3036-3042. doi: 10.1016/j.applthermaleng.2011.05.037
|
[7] |
CHENG X, ZHAO M, FEUERSTEIN F, et al. Prediction of heat transfer to supercritical water at different boundary conditions[J]. International Journal of Heat and Mass Transfer, 2019, 131: 527-536. doi: 10.1016/j.ijheatmasstransfer.2018.11.028
|
[8] |
LI Y, CHEN Y Q, ZHANG Y C, et al. An improved heat transfer correlation for supercritical aviation kerosene flowing upward and downward in vertical tubes[J]. Journal of Thermal Science, 2020, 29(1): 131-143. doi: 10.1007/s11630-019-1197-2
|
[9] |
CHENG X, KUANG B, YANG Y H. Numerical analysis of heat transfer in supercritical water cooled flow channels[J]. Nuclear Engineering and Design, 2007, 237(3): 240-252. doi: 10.1016/j.nucengdes.2006.06.011
|
[10] |
ZHANG B, SHAN J Q, JIANG J. Numerical analysis of supercritical water heat transfer in horizontal circular tube[C]//Proceedings of the 17th International Conference on Nuclear Engineering. Brussels: ICONE, 2009: 471-479.
|
[11] |
PANDEY S, LAURIEN E, CHU X. A modified convective heat transfer model for heated pipe flow of supercritical carbon dioxide[J]. International Journal of Thermal Sciences, 2017, 117: 227-238. doi: 10.1016/j.ijthermalsci.2017.03.021
|
[12] |
ZVORYKIN A, FIALKO N, JULII S, et al. CFD study on specifics of flow and heat transfer in vertical bare tubes cooled with water at supercritical pressures[C]//Proceedings of the 25th International Conference on Nuclear Engineering, Shanghai: AS ME, 2017: V009T15A013.
|
[13] |
XU K K, RUAN B, MENG H. Validation and analyses of RANS CFD models for turbulent heat transfer of hydrocarbon fuels at supercritical pressures[J]. International Journal of Thermal Sciences, 2018, 124: 212-226. doi: 10.1016/j.ijthermalsci.2017.10.019
|
[14] |
YANG Z, CHENG X, ZHENG X H, et al. Reynolds-averaged Navier-Stokes equations describing turbulent flow and heat transfer behavior for supercritical fluid[J]. Journal of Thermal Science, 2021, 30(1): 191-200. doi: 10.1007/s11630-020-1339-6
|
[15] |
LIU X J, SONG M Q, CHENG X. Current status and challenges of supercritical fluid thermal hydraulics[J]. Nuclear Engineering and Design, 2019, 354: 110176. doi: 10.1016/j.nucengdes.2019.110176
|
[16] |
ZHANG R Z, TONG W T, XU S Y, et al. ANN model with feature selection to predict turbulent heat transfer characteristics of supercritical fluids: take CO2 and H2O as examples[J]. International Journal of Thermal Sciences, 2023, 188: 108247. doi: 10.1016/j.ijthermalsci.2023.108247
|
[17] |
AMARDEEP S, SALIGRAM A K, KASHYAP S R, et al. Heat transfer characteristics for upward flow of supercritical water in a vertical pipe–computational fluid dynamics analysis and artificial neural network prediction[J]. International Journal of Thermal Sciences, 2023, 184: 107990. doi: 10.1016/j.ijthermalsci.2022.107990
|
[18] |
MA D L, ZHOU T, CHEN J, et al. Supercritical water heat transfer coefficient prediction analysis based on BP neural network[J]. Nuclear Engineering and Design, 2017, 320: 400-408. doi: 10.1016/j.nucengdes.2017.06.013
|
[19] |
SUN F, XIE G N, LI S L. An artificial-neural-network based prediction of heat transfer behaviors for in-tube supercritical CO2 flow[J]. Applied Soft Computing, 2021, 102: 107110. doi: 10.1016/j.asoc.2021.107110
|
[20] |
PESTEEI S M, MEHRABI M. Modeling of convection heat transfer of supercritical carbon dioxide in a vertical tube at low Reynolds numbers using artificial neural network[J]. International Communications in Heat and Mass Transfer, 2010, 37(7): 901-906. doi: 10.1016/j.icheatmasstransfer.2010.05.018
|
[21] |
GUIDOTTI R, MONREALE A, RUGGIERI S, et al. A survey of methods for explaining black box models[J]. ACM Computing Surveys (CSUR), 2018, 51(5): 93.
|
[22] |
Hall W B, Jackson J D, Watson A. Paper 3: A review of forced convection heat transfer to fluids at supercritical pressures[C]//Proceedings of the institution of mechanical engineers, conference proceedings. Sage UK: London, England: SAGE Publications, 1967, 182(9): 10-22.
|
[23] |
JIANG P X, ZHANG Y, ZHAO C R, et al. Convection heat transfer of CO2 at supercritical pressures in a vertical mini tube at relatively low Reynolds numbers[J]. Experimental Thermal and Fluid Science, 2008, 32(8): 1628-1637. doi: 10.1016/j.expthermflusci.2008.05.006
|
[24] |
LIU S H, HUANG Y P, LIU G X, et al. Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1144-1156. doi: 10.1016/j.ijheatmasstransfer.2016.10.093
|
[25] |
HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1026-1034.
|
[26] |
CARVALHO D V, PEREIRA E M, CARDOSO J S. Machine learning interpretability: A survey on methods and metrics[J]. Electronics, 2019, 8(8): 832. doi: 10.3390/electronics8080832
|
[27] |
SUDJIANTO A, ZHANG A. Designing inherently interpretable machine learning models[J]. 2021. DOI: 10.48550/arXiv.2111.01743.
|
[28] |
DITTUS F W, BOELTER L M K. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12(1): 3-22. doi: 10.1016/0735-1933(85)90003-X
|
[29] |
MOKRY S, PIORO I, FARAH A, et al. Development of supercritical water heat-transfer correlation for vertical bare tubes[J]. Nuclear Engineering and Design, 2011, 241(4): 1126-1136. doi: 10.1016/j.nucengdes.2010.06.012
|
[30] |
JACKSON J D. Fluid flow and convective heat transfer to fluids at supercritical pressure[J]. Nuclear Engineering and Design, 2013, 264: 24-40. doi: 10.1016/j.nucengdes.2012.09.040
|
[31] |
CHENG X, YANG Y H, HUANG S F. A simplified method for heat transfer prediction of supercritical fluids in circular tubes[J]. Annals of Nuclear Energy, 2009, 36(8): 1120-1128. doi: 10.1016/j.anucene.2009.04.016
|
[32] |
XIN L, BO K. Wide-ranged heat transfer correlations of supercritical water in vertical upward channels[J]. Nuclear Science & Engineering, 2012, 32(4): 344-353.
|
[33] |
KIM D E, KIM M H. Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 176-191. doi: 10.1016/j.ijheatfluidflow.2010.09.001
|