Advance Search
Volume 45 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
Guo Yongfei, Zhang Rongbin, Yao Zhiyuan, Lang Yukai, Zhao Jiayu. Research on Optimization Control of Nuclear Power Plant Coordination System Based on ESO-MPC[J]. Nuclear Power Engineering, 2024, 45(6): 178-184. doi: 10.13832/j.jnpe.2024.06.0178
Citation: Guo Yongfei, Zhang Rongbin, Yao Zhiyuan, Lang Yukai, Zhao Jiayu. Research on Optimization Control of Nuclear Power Plant Coordination System Based on ESO-MPC[J]. Nuclear Power Engineering, 2024, 45(6): 178-184. doi: 10.13832/j.jnpe.2024.06.0178

Research on Optimization Control of Nuclear Power Plant Coordination System Based on ESO-MPC

doi: 10.13832/j.jnpe.2024.06.0178
  • Received Date: 2024-02-21
  • Rev Recd Date: 2024-04-12
  • Publish Date: 2024-12-17
  • The regulation characteristics of nuclear island and conventional island are quite different, so it is necessary to coordinate the synchronous control of nuclear island and conventional island to achieve better control effect. It is of great significance to study the optimal control strategy of coordinated control system. In this paper, a model predictive control (MPC) algorithm based on extended state observer (ESO) is proposed to solve the problem that the coordinated control system of nuclear power plant is prone to disturbance. The proposed method accurately estimates the external disturbance by using ESO, and then integrates the disturbance estimation value into the rolling optimization process of MPC to realize the adaptive correction of the prediction model, thereby obtaining the required optimization control rate. In the simulation experiment, the algorithm proposed in this paper was compared with the performance of proportional integral differential control and multivariable model predictive controller, and the results showed that the algorithm proposed in this paper had good performance. In the scenario of unit load setting disturbance, the mean square error of main steam pressure and unit load by the proposed algorithm is 0.06 and 0.02 respectively, which is significantly better than the other two algorithms. The algorithm proposed in this paper can enable the coordinated control system of nuclear power units to achieve precise control performance in the presence of external disturbances.

     

  • loading
  • [1]
    杜祥琬,叶奇蓁,徐銤,等. 核能技术方向研究及发展路线图[J]. 中国工程科学,2018, 20(3): 17-24.
    [2]
    郑洁,余凡,朱军民,等. 海洋核动力装备国内外发展现况与前景展望[J]. 中国工程科学,2023, 25(3): 62-73.
    [3]
    陈智,廖龙涛,张英,等. ACP100S浮动核电站核蒸汽供应系统控制系统分析与仿真研究[J]. 南华大学学报(自然科学版),2018, 32(6): 9-14.
    [4]
    刘同先,李庆,王晨琳,等. Mode-C运行与控制模式设计技术研究[J]. 原子能科学技术,2021, 55(1): 121-127. doi: 10.7538/yzk.2020.youxian.0085
    [5]
    席原,刘景宾. 单元机组协调控制系统研究进展[J]. 工业仪表与自动化装置,2011(5): 10-16,101. doi: 10.3969/j.issn.1000-0682.2011.05.003
    [6]
    ELIASI H, MENHAJ M B, DAVILU H. Robust nonlinear model predictive control for nuclear power plants in load following operations with bounded xenon oscillations[J]. Nuclear Engineering and Design, 2011, 241(2): 533-543. doi: 10.1016/j.nucengdes.2010.12.004
    [7]
    苏杰. 核动力装置非线性模型预测协调控制仿真研究[J]. 核科学与工程,2011, 31(2): 104-110.
    [8]
    张伟,丁宗华,夏国清,等. 协调控制技术在核动力系统中的应用研究[J]. 核科学与工程,2006, 26(4): 337-342. doi: 10.3321/j.issn:0258-0918.2006.04.010
    [9]
    成守宇,彭敏俊,刘新凯,等. 基于数字化仪控技术的核动力装置协调控制器的设计[J]. 原子能科学技术,2014, 48(S1): 576-581.
    [10]
    ZHAO Y X, DU X, XIA G L, et al. A novel coordinated control for integrated pressurized water reactor[J]. Annals of Nuclear Energy, 2015, 85: 1029-1034. doi: 10.1016/j.anucene.2015.07.022
    [11]
    钱虹,金蔚霄. 基于多模型动态矩阵预测的冷却剂平均温度控制[J]. 热力发电,2015, 44(11): 98-103,108. doi: 10.3969/j.issn.1002-3364.2015.11.098
    [12]
    钱虹,房振鲁,金蔚霄,等. 核电厂反应堆冷却剂平均温度预测控制及仿真研究[J]. 核动力工程,2016, 37(2): 91-96.
    [13]
    邓志光,青先国,吴茜,等. ALSTM-GPC在核电厂协调控制系统中的应用[J]. 核动力工程,2021, 42(S2): 41-47.
    [14]
    李雅君. 单堆双机核动力装置建模与控制方法研究[D]. 南京: 东南大学,2020.
    [15]
    王岱鹏. 动态矩阵控制在核动力系统堆机协调中的应用研究[D]. 保定: 华北电力大学,2022.
    [16]
    DONG Z, LI B W, HUANG X J, et al. Power-pressure coordinated control of modular high temperature gas-cooled reactors[J]. Energy, 2022, 252: 124042. doi: 10.1016/j.energy.2022.124042
    [17]
    CUI C C, ZHANG J L, SHEN J. System-level modeling, analysis and coordinated control design for the pressurized water reactor nuclear power system[J]. Energy, 2023, 283: 128472. doi: 10.1016/j.energy.2023.128472
    [18]
    WANG L N, CHEN C Q, CHEN L K, et al. A coordinated control methodology for small pressurized water reactor with steam dump control system[J]. Energy, 2023, 282: 129008. doi: 10.1016/j.energy.2023.129008
    [19]
    CASTELLETTI A, FICCHÌ A, COMINOLA A, et al. Model predictive control of water resources systems: a review and research agenda[J]. Annual Reviews in Control, 2023, 55: 442-465. doi: 10.1016/j.arcontrol.2023.03.013
    [20]
    LI P, TONG X S, JIN W T, et al. Observer based model predictive current control of distorted grid connected single phase rectifier without AC voltage sensor[J]. Control Engineering Practice, 2023, 138: 105589. doi: 10.1016/j.conengprac.2023.105589
    [21]
    杨志军,高忠义,王丽君,等. 面向刚柔耦合定位平台的模型预测控制算法[J]. 吉林大学学报(工学版),2022, 52(12): 2806-2815.
    [22]
    CHEN C, PAN L, SUN L, et al. Generalized ESO based stable predictive tracking control for micro gas turbine cogeneration system[J]. Journal of the Franklin Institute, 2022, 359(11): 5148-5173. doi: 10.1016/j.jfranklin.2022.05.051
    [23]
    HUI J W, LEE Y K, YUAN J Q. ESO-based adaptive event-triggered load following control design for a pressurized water reactor with samarium–promethium dynamics[J]. Energy, 2023, 271: 127058. doi: 10.1016/j.energy.2023.127058
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (15) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return