Citation: | Sun Qizheng, Liu Xiaojing, Zhang Tengfei. Investigation on Hybrid Discontinuous Galerkin Method Based on First-Order Neutron Transport Equation[J]. Nuclear Power Engineering, 2024, 45(6): 248-253. doi: 10.13832/j.jnpe.2024.06.0248 |
[1] |
XIAO W, LI X Y, LI P J, et al. High-fidelity multi-physics coupling study on advanced heat pipe reactor[J]. Computer Physics Communications, 2022, 270: 108152. doi: 10.1016/j.cpc.2021.108152
|
[2] |
STERBENTZ J W, WERNER J E, MCKELLAR M G, et al. Special purpose nuclear reactor (5 MW) for reliable power at remote sites assessment report: INL/EXT-16-40741[R]. Idaho Falls: Idaho National Laboratory, 2017.
|
[3] |
JARETEG K, VINAI P, DEMAZIÈRE C. Fine-mesh deterministic modeling of PWR fuel assemblies: Proof-of-principle of coupled neutronic/thermal-hydraulic calculations[J]. Annals of Nuclear Energy, 2014, 68: 247-256. doi: 10.1016/j.anucene.2013.12.019
|
[4] |
FIORINA C, HURSIN M, PAUTZ A. Extension of the GeN-Foam neutronic solver to SP3 analysis and application to the CROCUS experimental reactor[J]. Annals of Nuclear Energy, 2017, 101: 419-428. doi: 10.1016/j.anucene.2016.11.042
|
[5] |
CHEN J, LIU Z Y, ZHAO C, et al. A new high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2018, 116: 417-428. doi: 10.1016/j.anucene.2018.02.049
|
[6] |
ZHAO C, PENG X J, ZHANG H B, et al. A new numerical nuclear reactor neutronics code SHARK[J]. Frontiers in Energy Research, 2021, 9: 784247. doi: 10.3389/fenrg.2021.784247
|
[7] |
PEIRÓ J, SHERWIN S. Finite difference, finite element and finite volume methods for partial differential equations[M]//YIP S. Handbook of Materials Modeling. Dordrecht: Springer, 2005: 2415-2446.
|
[8] |
EKLUND M D, DUPONT M, CARACAPPA P F, et al. Neutronics simulations of the RPI walthousen reactor critical facility (RCF) using proteus-SN[J]. Transactions of the American Nuclear Society, 2017, 117: 114-115.
|
[9] |
WANG Y Q, SCHUNERT S, ORTENSI J, et al. Rattlesnake: a MOOSE-based multiphysics multischeme radiation transport application[J]. Nuclear Technology, 2021, 207(7): 1047-1072. doi: 10.1080/00295450.2020.1843348
|
[10] |
PRINCE Z M, HANOPHY J T, LABOURÉ V M, et al. Neutron transport methods for multiphysics heterogeneous reactor core simulation in Griffin[J]. Annals of Nuclear Energy, 2024, 200: 110365. doi: 10.1016/j.anucene.2024.110365
|
[11] |
GIACOMINI M, SEVILLA R, HUERTA A. HDGlab: an open-source implementation of the hybridisable discontinuous Galerkin method in MATLAB[J]. Archives of Computational Methods in Engineering, 2021, 28(3): 1941-1986. doi: 10.1007/s11831-020-09502-5
|
[12] |
COCKBURN B, QIU W F, SHI K. Conditions for superconvergence of HDG methods for second-order elliptic problems[J]. Mathematics of Computation, 2012, 81(279): 1327-1353. doi: 10.1090/S0025-5718-2011-02550-0
|
[13] |
BUI-THANH T. From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations[J]. Journal of Computational Physics, 2015, 295: 114-146. doi: 10.1016/j.jcp.2015.04.009
|
[14] |
ZHANG T F, LI Z P. Variational nodal methods for neutron transport: 40 years in review[J]. Nuclear Engineering and Technology, 2022, 54(9): 3181-3204. doi: 10.1016/j.net.2022.04.012
|
[15] |
SUN Q Z, XIAO W, LI X Y, et al. A variational nodal formulation for multi-dimensional unstructured neutron diffusion problems[J]. Nuclear Engineering and Technology, 2023, 55(6): 2172-2194. doi: 10.1016/j.net.2023.02.021
|
[16] |
DIJOUX L, FONTAINE V, MARA T A. A projective hybridizable discontinuous Galerkin mixed method for second-order diffusion problems[J]. Applied Mathematical Modelling, 2019, 75: 663-677. doi: 10.1016/j.apm.2019.05.054
|
[17] |
CARTIER J, PEYBERNES M. Mixed variational formulation and mixed-hybrid discretization of the transport equation[J]. Transport Theory and Statistical Physics, 2010, 39(1): 1-46. doi: 10.1080/00411450.2010.529630
|
[18] |
AZMY Y, SARTORI E. Nuclear computational science: a century in review[M]. Dordrecht: Springer, 2010, 106-112.
|
[19] |
LEWIS E E, CARRICO C B, PALMIOTTI G. Variational nodal formulation for the spherical harmonics equations[J]. Nuclear Science and Engineering, 1996, 122(2): 194-203. doi: 10.13182/NSE96-1
|
[20] |
SMITH M A, LEWIS E E, PALMIOTTI G, et al. A first-order spherical harmonics formulation compatible with the variational nodal method[C]//Proceedings of the Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments. Argonne: Argonne National Lab. , 2004: 25-29.
|
[21] |
Smith M A, Lewis E E, Palmiotti G, et al. A first-order integral method developed for the VARIANT code[C]. PHYSOR-2006-American Nuclear Society's Topical Meeting on Reactor Physics. 2006.
|
[22] |
ZHANG T F, XIAO W, YIN H, et al. VITAS: a multi-purpose simulation code for the solution of neutron transport problems based on variational nodal methods[J]. Annals of Nuclear Energy, 2022, 178: 109335. doi: 10.1016/j.anucene.2022.109335
|
[23] |
张滕飞,殷晗,孙启政,等. 通用型中子输运程序VITAS应用研究[J]. 核动力工程,2023, 44(2): 15-23.
|
[24] |
TAKEDA T, IKEDA H. 3-D neutron transport benchmarks[J]. Journal of Nuclear Science and Technology, 1991, 28(7): 656-669. doi: 10.1080/18811248.1991.9731408
|
[25] |
SUN Q Z, LIU X J, CHAI X, et al. A discrete-ordinates variational nodal method for heterogeneous neutron Boltzmann transport problems[J]. Computers & Mathematics with Applications, 2024, 170: 142-160.
|
[26] |
SMITH M A, LEWIS E E, NA B C. Benchmark on DETERMINISTIC 3-D MOX fuel assembly transport calculations without spatial homogenization[J]. Progress in Nuclear Energy, 2006, 48(5): 383-393. doi: 10.1016/j.pnucene.2006.01.002
|