Citation: | Song Xiaoyong, Pang Yongqiang, Meng Xiancai, Tian Shujian, Zhang Dehao, Li Xu. Design and Experimental Study of High Temperature Flowing Liquid Metal Corrosion Device[J]. Nuclear Power Engineering, 2024, 45(6): 263-270. doi: 10.13832/j.jnpe.2024.06.0263 |
[1] |
徐玉平,吕一鸣,周海山等. 核聚变堆包层结构材料研究进展及展望[J]. 材料导报,2018, 32(17): 2897-2906. doi: 10.11896/j.issn.1005-023X.2018.17.001
|
[2] |
LIAO H, WANG X, YANG G, ET AL. Recent progress of R&D activities on reduced activation ferritic/martensitic steel (CLF-1)[J]. Fusion Engineering and Design, 2019, 147: 111235. doi: 10.1016/j.fusengdes.2019.06.008
|
[3] |
LUO W, HUANG Q, LUO L, ET AL. Effect of minor addition of Ce on microstructure and LBE corrosion resistance for CLAM steel[J]. Corrosion Science, 2022, 209: 110796. doi: 10.1016/j.corsci.2022.110796
|
[4] |
HOSAKA T, KONDO M, SATO S, ET AL. Chemical compatibility of F82H and 316L in liquid metal heat transfer mediums Li, Na and NaK[J]. Journal of Nuclear Materials, 2022, 561: 153546. doi: 10.1016/j.jnucmat.2022.153546
|
[5] |
HERNÁNDEZ T, FERNÁNDEZ P. Corrosion susceptibility comparison of EUROFER steel in contact two lithium silicate breeders[J]. Fusion Engineering and Design, 2014, 89(7-8): 1436-1439. doi: 10.1016/j.fusengdes.2013.12.043
|
[6] |
GLASBRENNER H, KONYS J, VOß Z. Corrosion behaviour of low activation steels in flowing Pb–17Li[J]. Journal of nuclear materials, 2000, 281(2-3): 225-230. doi: 10.1016/S0022-3115(00)00186-0
|
[7] |
NAJAFI H. Tensile Flow Behavior of 9Cr–2WVTa Reduced-Activation Ferritic /Martensitic Steel[J]. Journal of Engineering Materials and Technology, 2016, 138(3): 031003. doi: 10.1115/1.4032560
|
[8] |
GRÄNING T, SRIDHARAN N. Benchmarking a 9Cr-2WVTa reduced activation ferritic martensitic steel fabricated via additive manufacturing[J]. Metals, 2022, 12(2): 342. doi: 10.3390/met12020342
|
[9] |
S. J. ZINKLE, J. L. BOUTARD, D. T. HOELZER, A. KIMURA, R. LINDAU, G. R. ODETTE, M. RIETH, L. Tan, H. Tanigawa, Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications, Nucl. Fusion 57 (2017) 92005.
|
[10] |
S. J. ZINKLE, L. L. SNEAD. Designing radiation resistance in materials for fusion energy, Annu. Rev. Mater. Res. 44 (2014) 241e267.
|
[11] |
HONG Z, ZHANG X, YAN Q, ET AL. A new method for preparing 9Cr-ODS steel using elemental yttrium and Fe2O3 oxygen carrier[J]. Journal of Alloys and Compounds, 2018, 770.
|
[12] |
ZHANG D H, MENG X C, ZUO G Z, ET AL. Study of the corrosion characteristics of 304 and 316L stainless steel in the static liquid lithium[J]. Journal of Nuclear Materials, 2021, 553: 153032. doi: 10.1016/j.jnucmat.2021.153032
|
[13] |
TSISAR V, KONDO M, XU Q, ET AL. Effect of nitrogen on the corrosion behavior of RAFM JLF-1 steel in lithium[J]. J. Nucl. Mater., 2011, 417(1-3): 1205-1209. doi: 10.1016/j.jnucmat.2010.12.280
|
[14] |
DI GABRIELE F, AMORE S, SCAIOLA C, ET AL. Corrosion behaviour of 12Cr-ODS steel in molten lead[J]. Nuclear Engineering and Design, 2014, 280: 69-75. doi: 10.1016/j.nucengdes.2014.09.030
|
[15] |
KONYS J, KRAUSS W. Corrosion and precipitation effects in a forced-convection Pb–15.7 Li loop[J]. Journal of Nuclear Materials, 2013, 442(1-3): S576-S579. doi: 10.1016/j.jnucmat.2013.04.016
|
[16] |
KONDO M, MUROGA T, SAGARA A, ET AL. Flow accelerated corrosion and erosion–corrosion of RAFM steel in liquid breeders[J]. Fusion Engineering & Design, 2011, 86(9-11): 2500-2503.
|
[17] |
汪卫华,朱志强,李晋岭,等. 液态金属回路DRAGON-Ⅱ锂铅合金流动与传热三维数值模拟[J]. 核科学与工程,2010, 30(2): 166-171.
|
[18] |
QI X, KONDO M, NAGASAKA T, ET AL. Corrosion characteristics of low activation ferritic steel, JLF-1, in liquid lithium in static and thermal convection conditions[J]. Fusion Engineering & Design, 2008, 83(10-12): 1477-1483.
|
[19] |
BENAMATI G, FAZIO C, RICAPITO I. Mechanical and corrosion behaviour of EUROFER 97 steel exposed to Pb–17Li[J]. Journal of Nuclear Materials, 2002, 307: 1391-1395.
|
[20] |
甘祥来. Li-Pb及Fe-Li界面特性的原子模拟[D]. 长沙:湖南大学,2018.
|
[21] |
MENG X, ZUO G, REN J, ET AL. Study of the corrosion behaviors of 304 austenite stainless steel specimens exposed to static liquid lithium at 600 K[J]. Journal of Nuclear Materials, 2016, 480: 25-31. doi: 10.1016/j.jnucmat.2016.07.061
|
[22] |
刘斌. ANSYS Fluent 2020 综合应用案例详解[M]. 清华大学出版社,2021.
|
[23] |
LYUBLINSKI I E, VERTKOV A V, EVTIKHIN V A. Application of lithium in systems of fusion reactors. 1. Physical and chemical properties of lithium[J]. Plasma Devices and Operations, 2009, 17(1): 42-72. doi: 10.1080/10519990802703277
|
[24] |
LYUBLINSKI I E, VERTKOV A V, EVTIKHIN V A. Application of lithium in systems of fusion reactors. 2. The issues of practical use of lithium in experimental facilities and fusion devices[J]. Plasma devices and operations, 2009, 17(4): 265-285. doi: 10.1080/10519990903172364
|
[25] |
郄俊懋. 304不锈钢高温力学性能及热物理性能研究[D]. 内蒙古: 内蒙古科技大学,2014.
|
[26] |
MENG X C, XU, C, ZUO, G. Z, ET AL. Corrosion characteristics of copper in static liquid lithium under high vacuum [J]. Journal of Nuclear Materials: Materials Aspects of Fission and Fusion, 2019, 513282-292.
|
[27] |
舒磊,曹智,夏文星. 316L 不锈钢在静态液态锂中的腐蚀行为研究[J]. 核聚变与等离子体物理,2017, 37: 336-341.
|
[28] |
孟献才. 聚变装置中相关材料在液态锂中的腐蚀特性研究[D]. 长沙:湖南大学,2018.
|