Advance Search
Volume 45 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
Chen Jiajie, Wang Shiwei, He Hui, Liu Xiaojing, Xiong Jinbiao. Optimization of Oxygen Control Strategy for Corrosion Mitigation in Lead-Bismuth Cooled Fast Reactors[J]. Nuclear Power Engineering, 2024, 45(6): 280-289. doi: 10.13832/j.jnpe.2024.06.0280
Citation: Chen Jiajie, Wang Shiwei, He Hui, Liu Xiaojing, Xiong Jinbiao. Optimization of Oxygen Control Strategy for Corrosion Mitigation in Lead-Bismuth Cooled Fast Reactors[J]. Nuclear Power Engineering, 2024, 45(6): 280-289. doi: 10.13832/j.jnpe.2024.06.0280

Optimization of Oxygen Control Strategy for Corrosion Mitigation in Lead-Bismuth Cooled Fast Reactors

doi: 10.13832/j.jnpe.2024.06.0280
  • Received Date: 2024-06-05
  • Rev Recd Date: 2024-10-18
  • Publish Date: 2024-12-17
  • To obtain the optimal oxygen content control strategy for mitigating corrosion of fuel cladding in lead-bismuth fast reactors (LBFRs), this study constructed a T91 oxidation/corrosion model to analyze the evolution of the fuel element cladding interface. On this basis, taking the thickness of oxide layer as the constraint condition of the optimization problem, the whale optimization algorithm (WOA) was used to optimize the oxygen content control strategy, and the "low-medium-high-low" cyclic fluctuation oxygen content control strategy was obtained. Furthermore, this study simulated and compared the distribution of the oxide layer on the surface of fuel elements under fixed oxygen-dominated condition and optimized oxygen control strategy. The results indicated that under the optimized oxygen control strategy, the fuel element cladding did not trigger dissolution corrosion, and the overall thickness of the surface oxide layer was significantly reduced compared to the fixed oxygen-dominated condition, with an average thickness reduction of 95.6% for the magnetite layer and 44.2% for the spinel layer. The optimal oxygen content control strategy constructed in this paper can provide a reference for mitigating corrosion of cladding in lead-bismuth fast reactors.

     

  • loading
  • [1]
    SMITH C F, CINOTTI L. Lead-cooled fast reactors (LFRs)[M]//PIORO I L. Handbook of Generation IV Nuclear Reactors. 2nd ed. Cambridge: Elsevier, 2023: 195-230.
    [2]
    OECD/NEA. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies[M]. Paris: OECD Publishing, 2015: 17-23.
    [3]
    BALLINGER R G, LIM J. An overview of corrosion issues for the design and operation of high-temperature lead- and lead-bismuth-cooled reactor systems[J]. Nuclear Technology, 2004, 147(3): 418-435. doi: 10.13182/NT04-A3540
    [4]
    FENG W P, ZHANG X, CAO L K, et al. Development of oxygen/corrosion product mass transfer model and oxidation-corrosion model in the lead-alloy cooled reactor core[J]. Corrosion Science, 2021, 190: 109708. doi: 10.1016/j.corsci.2021.109708
    [5]
    KIESER M, MUSCHER H, WEISENBURGER A, et al. Liquid metal corrosion/erosion investigations of structure materials in lead cooled systems: part 1[J]. Journal of Nuclear Materials, 2009, 392(3): 405-412. doi: 10.1016/j.jnucmat.2008.12.327
    [6]
    KONDO M, MUROGA T, SAGARA A, et al. Flow accelerated corrosion and erosion–corrosion of RAFM steel in liquid breeders[J]. Fusion Engineering and Design, 2011, 86(9-11): 2500-2503. doi: 10.1016/j.fusengdes.2011.01.108
    [7]
    KONDO M, TAKAHASHI M. Corrosion resistance of Si- and Al-rich steels in flowing lead–bismuth[J]. Journal of Nuclear Materials, 2006, 356(1-3): 203-212. doi: 10.1016/j.jnucmat.2006.05.019
    [8]
    LI C, LIU Y J, ZHANG F F, et al. Erosion-corrosion of 304N austenitic steels in liquid Pb-Bi flow perpendicular to steel surface[J]. Materials Characterization, 2021, 175: 111054. doi: 10.1016/j.matchar.2021.111054
    [9]
    LI N. Active control of oxygen in molten lead–bismuth eutectic systems to prevent steel corrosion and coolant contamination[J]. Journal of Nuclear Materials, 2002, 300(1): 73-81. doi: 10.1016/S0022-3115(01)00713-9
    [10]
    MARINO A, BUCKINGHAM S, GLADINEZ K, et al. Numerical modeling of iron-based corrosion product oxides mass transport in the MYRRHA reactor during normal operation[J]. Nuclear Engineering and Design, 2018, 338: 199-208. doi: 10.1016/j.nucengdes.2018.08.008
    [11]
    MARTINELLI L, BALBAUD-CÉLÉRIER F. Modelling of the oxide scale formation on Fe-Cr steel during exposure in liquid lead-bismuth eutectic in the 450-600℃ temperature range[J]. Materials and Corrosion, 2011, 62(6): 531-542. doi: 10.1002/maco.201005871
    [12]
    MARTINELLI L, BALBAUD-CÉLÉRIER F, PICARD G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb–Bi eutectic alloy (Part III)[J]. Corrosion Science, 2008, 50(9): 2549-2559. doi: 10.1016/j.corsci.2008.06.049
    [13]
    MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of an Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy at 470℃ (Part II)[J]. Corrosion Science, 2008, 50(9): 2537-2548. doi: 10.1016/j.corsci.2008.06.051
    [14]
    MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of a Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy (Part I)[J]. Corrosion Science, 2008, 50(9): 2523-2536. doi: 10.1016/j.corsci.2008.06.050
    [15]
    MARTINELLI L, DUFRENOY T, JAAKOU K, et al. High temperature oxidation of Fe–9Cr–1Mo steel in stagnant liquid lead–bismuth at several temperatures and for different lead contents in the liquid alloy[J]. Journal of Nuclear Materials, 2008, 376(3): 282-288. doi: 10.1016/j.jnucmat.2008.02.006
    [16]
    MARTINELLI L, GINESTAR K, BOTTON V, et al. Corrosion of T91 and pure iron in flowing and static Pb-Bi alloy between 450℃ and 540℃: experiments, modelling and mechanism[J]. Corrosion Science, 2020, 176: 108897. doi: 10.1016/j.corsci.2020.108897
    [17]
    SCHROER C, WEDEMEYER O, SKRYPNIK A, et al. Corrosion kinetics of Steel T91 in flowing oxygen-containing lead–bismuth eutectic at 450℃[J]. Journal of Nuclear Materials, 2012, 431(1-3): 105-112. doi: 10.1016/j.jnucmat.2011.11.014
    [18]
    BARBIER F, BENAMATI G, FAZIO C, et al. Compatibility tests of steels in flowing liquid lead–bismuth[J]. Journal of Nuclear Materials, 2001, 295(2-3): 149-156. doi: 10.1016/S0022-3115(01)00570-0
    [19]
    SCHROER C, VOß Z, WEDEMEYER O, et al. Oxidation of steel T91 in flowing lead–bismuth eutectic (LBE) at 550℃[J]. Journal of Nuclear Materials, 2006, 356(1-3): 189-197. doi: 10.1016/j.jnucmat.2006.05.009
    [20]
    ZHANG J S, LI N. Analysis on liquid metal corrosion–oxidation interactions[J]. Corrosion Science, 2007, 49(11): 4154-4184. doi: 10.1016/j.corsci.2007.05.012
    [21]
    BALBAUD-CÉLÉRIER F, BARBIER F. Investigation of models to predict the corrosion of steels in flowing liquid lead alloys[J]. Journal of Nuclear Materials, 2001, 289(3): 227-242. doi: 10.1016/S0022-3115(01)00431-7
    [22]
    AERTS A, GAVRILOV S, MANFREDI G, et al. Oxygen–iron interaction in liquid lead–bismuth eutectic alloy[J]. Physical Chemistry Chemical Physics, 2016, 18(29): 19526-19530. doi: 10.1039/C6CP01561A
    [23]
    ZHANG J S, LI N, CHEN Y T, et al. Corrosion behaviors of US steels in flowing lead–bismuth eutectic (LBE)[J]. Journal of Nuclear Materials, 2005, 336(1): 1-10. doi: 10.1016/j.jnucmat.2004.08.002
    [24]
    ZHANG J, HOSEMANN P, MALOY S. Models of liquid metal corrosion[J]. Journal of Nuclear Materials, 2010, 404(1): 82-96. doi: 10.1016/j.jnucmat.2010.05.024
    [25]
    SILVERMAN D C. Technical note: on estimating conditions for simulating velocity-sensitive corrosion in the rotating cylinder electrode[J]. Corrosion, 1999, 55(12): 1115-1118. doi: 10.5006/1.3283948
    [26]
    GU Z X, ZHANG Q X, GU Y, et al. Verification of a self-developed CFD-based multi-physics coupled code MPC-LBE for LBE-cooled reactor[J]. Nuclear Science and Techniques, 2021, 32(5): 52. doi: 10.1007/s41365-021-00887-x
    [27]
    LU D S, WANG C, WANG C L, et al. Numerical simulation of corrosion phenomena in oxygen-controlled environment for a horizontal lead-bismuth reactor core[J]. Journal of Nuclear Materials, 2023, 574: 154195. doi: 10.1016/j.jnucmat.2022.154195
    [28]
    TSISAR V, SCHROER C, WEDEMEYER O, et al. Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550℃ to flowing Pb-Bi eutectic with 10−7 mass% dissolved oxygen[J]. Journal of Nuclear Materials, 2017, 494: 422-438. doi: 10.1016/j.jnucmat.2017.07.031
    [29]
    ALEMBERTI A, CARLSSON J, MALAMBU E, et al. European lead fast reactor—ELSY[J]. Nuclear Engineering and Design, 2011, 241(9): 3470-3480. doi: 10.1016/j.nucengdes.2011.03.029
    [30]
    MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. doi: 10.1016/j.advengsoft.2016.01.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (16) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return