Citation: | Yan Jiasheng, Sui Yang, Dai Tao, Liu Jiayi, Jin Yi, Jia Xiaolong. Research on Intelligent Accident Diagnosis Model of Nuclear Reactor Coolant System[J]. Nuclear Power Engineering, 2025, 46(2): 282-292. doi: 10.13832/j.jnpe.2024.060034 |
[1] |
潘军,黎义斌,瞿泽晖,等. 华龙一号主泵卡轴事故工况瞬态过渡过程数值分析[J]. 核动力工程,2024, 45(1): 201-209.
|
[2] |
GAO Z W, CECATI C, DING S X. A survey of fault diagnosis and fault-tolerant techniques-part I: fault diagnosis with model-based and signal-based approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757-3767. doi: 10.1109/TIE.2015.2417501
|
[3] |
TIAN J L, JIANG Y C, ZHANG J S, et al. High-performance fault classification based on feature importance ranking-XgBoost approach with feature selection of redundant sensor data[J]. Current Chinese Science, 2022, 2(3): 243-251. doi: 10.2174/2210298102666220318100051
|
[4] |
陈志辉,夏虹,刘邈. 核电系统故障诊断专家系统研究[J]. 核动力工程,2005, 26(5): 523-527. doi: 10.3969/j.issn.0258-0926.2005.05.023
|
[5] |
张燕,周志伟,董秀臣. 核电厂实时故障诊断专家系统的设计与实现[J]. 原子能科学技术,2006, 40(4): 420-423.
|
[6] |
OH C H, LEE J I. Real time nuclear power plant operating state cognitive algorithm development using dynamic Bayesian network[J]. Reliability Engineering & System Safety, 2020, 198: 106879.
|
[7] |
WU G H, TONG J J, ZHANG L G, et al. Framework for fault diagnosis with multi-source sensor nodes in nuclear power plants based on a Bayesian network[J]. Annals of Nuclear Energy, 2018, 122: 297-308. doi: 10.1016/j.anucene.2018.08.050
|
[8] |
ISERMANN R. Model-based fault-detection and diagnosis -status and applications[J]. Annual Reviews in Control, 2005, 29(1): 71-85. doi: 10.1016/j.arcontrol.2004.12.002
|
[9] |
BAKHTIARIDOUST M, YADEGAR M, MESKIN N. Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator[J]. ISA Transactions, 2023, 134: 200-211. doi: 10.1016/j.isatra.2022.08.030
|
[10] |
ZHANG W T, YANG D, WANG H C. Data-driven methods for predictive maintenance of industrial equipment: a survey[J]. IEEE Systems Journal, 2019, 13(3): 2213-2227. doi: 10.1109/JSYST.2019.2905565
|
[11] |
AYODEJI A, LIU Y K. Support vector ensemble for incipient fault diagnosis in nuclear plant components[J]. Nuclear Engineering and Technology, 2018, 50(8): 1306-1313. doi: 10.1016/j.net.2018.07.013
|
[12] |
WANG H, PENG M J, HINES J W, et al. A hybrid fault diagnosis methodology with support vector machine and improved particle swarm optimization for nuclear power plants[J]. ISA Transactions, 2019, 95: 358-371. doi: 10.1016/j.isatra.2019.05.016
|
[13] |
NAIMI A, DENG J M, SHIMJITH S R, et al. Fault detection and isolation of a pressurized water reactor based on neural network and k-nearest neighbor[J]. IEEE Access, 2022, 10: 17113-17121. doi: 10.1109/ACCESS.2022.3149772
|
[14] |
刘永阔,夏虹,谢春丽,等. BP-RBF神经网络在核电厂故障诊断中的应用[J]. 原子能科学技术,2008, 42(3): 193-199. doi: 10.7538/yzk.2008.42.03.0193
|
[15] |
GUO H, HU S, WANG F, et al. A novel method for quantitative fault diagnosis of photovoltaic systems based on data-driven[J]. Electric Power Systems Research, 2022, 210: 108121. doi: 10.1016/j.jpgr.2022.108121
|
[16] |
WEN L, LI X Y, GAO L, et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5990-5998. doi: 10.1109/TIE.2017.2774777
|
[17] |
LEE G, LEE S J, LEE C. A convolutional neural network model for abnormality diagnosis in a nuclear power plant[J]. Applied Soft Computing, 2021, 99: 106874. doi: 10.1016/j.asoc.2020.106874
|
[18] |
王天舒,余刃,刘笑凡. 核动力装置运行故障诊断系统设计研究[J]. 核动力工程,2018, 39(2): 176-179.
|
[19] |
吴琼,李永飞,李铭洋. 异常数据实时检测方法研究综述[J]. 现代计算机,2022, 28(16): 9-15. doi: 10.3969/j.issn.1007-1423.2022.16.002
|
[20] |
宋群,袁青霞,王俊江. 基于自动机器学习的运动过程心电检测算法[J]. 西北大学学报: 自然科学版,2023, 53(5): 771-781.
|
[21] |
ZHOU D X. Theory of deep convolutional neural networks: downsampling[J]. Neural Networks, 2020, 124: 319-327. doi: 10.1016/j.neunet.2020.01.018
|
[22] |
陈雨欣,刘章鑫,刘欣谊,等. 基于机器学习算法的扬州市冬小麦遥感分类提取[J]. 中国农机化学报,2024, 45(8): 154-161,169.
|
[23] |
孙超. 基于岭回归的地铁车载设备故障预测[J]. 铁路通信信号工程技术,2024, 21(8): 74-79. doi: 10.3969/j.issn.1673-4440.2024.08.012
|