Advance Search
Turn off MathJax
Article Contents
Xu Yujie, Mo Jinhong, Dong Xiaomeng, Liu Yong, Xu Anqi, Yu Yang. Research on Prediction of Transient Parameters in Tod Bundle Subchannel Based on POD-ML Method[J]. Nuclear Power Engineering. doi: 10.13832/j.jnpe.2024.080031
Citation: Xu Yujie, Mo Jinhong, Dong Xiaomeng, Liu Yong, Xu Anqi, Yu Yang. Research on Prediction of Transient Parameters in Tod Bundle Subchannel Based on POD-ML Method[J]. Nuclear Power Engineering. doi: 10.13832/j.jnpe.2024.080031

Research on Prediction of Transient Parameters in Tod Bundle Subchannel Based on POD-ML Method

doi: 10.13832/j.jnpe.2024.080031
  • Received Date: 2024-08-12
  • Rev Recd Date: 2024-12-26
  • Available Online: 2025-01-15
  • Model reduction (ROM) effectively reduces the complexity of physical models by mapping full-order conservation equations to lower-order subspaces or building data-driven proxy models. Compared with traditional computational fluid dynamics (CFD) simulation, the reduced order model is more efficient in large-scale simulation. In this paper, a reduced order model framework is proposed by combining POD with machine learning (ML) to predict mass flow parameters in beam subchannels. The comparison of two different forecasting methods shows that both methods have advantages and disadvantages in long-term and short-term forecasting, which can provide a scheme for other complex system forecasting in the future.

     

  • loading
  • [1]
    高勇,程毅,崔军,等. 基于CFD的绕丝元件棒束通道内流动传热特性研究[J]. 核科学与工程,2024,44(2): 395-403.
    [2]
    HE T J, LIU J, YE S J, et al. A novel model order reduction technique for solving horizontal refraction equations in the modeling of three-dimensional underwater acoustic propagation[J]. Journal of Sound and Vibration, 2024, 591: 118617. doi: 10.1016/j.jsv.2024.118617
    [3]
    LUO H, ZHANG X, CUI K E, et al. A multi-scale model-order reduction strategy for vibration analysis of coupled structures with local inhomogeneities[J]. Computers & Structures, 2024, 290: 107191.
    [4]
    HE S P, WANG M J, ZHANG J, et al. A deep-learning reduced-order model for thermal hydraulic characteristics rapid estimation of steam generators[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123424. doi: 10.1016/j.ijheatmasstransfer.2022.123424
    [5]
    温晓,刘琪,高振,等. 局部非侵入式约化基模型在瑞利-泰勒不稳定中的应用[J]. 山东大学学报(理学版),2020,55(2): 109-117.
    [6]
    杨迪,段承杰,丁鹏,等. 参数化流动传热问题的模型降阶方法研究[J]. 原子能科学技术,2024,58(7): 1440-1451.
    [7]
    PEARSON K. LIII. On lines and planes of closest fit to systems of points in space[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901, 2(11): 559-572. doi: 10.1080/14786440109462720
    [8]
    SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561-571. doi: 10.1090/qam/910462
    [9]
    王烨,朱欣悦,孙振东. 基于POD降阶模型的正弦波翅片扁管管翅式换热器流动与传热特性分析[J]. 化工学报,2022,73(5): 1986-1994.
    [10]
    HAZENBERG M, ASTRID P, WEILAND S. Low order modeling and optimal control design of a heated plate[C]//Proceedings of 2003 European Control Conference. Cambridge: IEEE, 2015: 1240-1245, doi: 10.23919/ECC.2003.7085130.
    [11]
    JIANG G H, KANG M, CAI Z W, et al. Data-driven temperature estimation of non-contact solids using deep-learning reduced-order models[J]. International Journal of Heat and Mass Transfer, 2022, 185: 122383. doi: 10.1016/j.ijheatmasstransfer.2021.122383
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article Metrics

    Article views (10) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return