Citation: | Liu Dong, Tian Wenxi, Liu Xiaojing, Hao Chen, Peng Hang, Yu Yang, Xiao Cong. Research and Prospects of Artificial Intelligence Scientific Computing for Nuclear Industry[J]. Nuclear Power Engineering, 2025, 46(2): 1-13. doi: 10.13832/j.jnpe.2024.09.0027 |
[1] |
汤涛. 科学计算的历史与展望[J]. 计算物理,2023, 40(1): 4-13.
|
[2] |
鄂维南. AI助力打造科学研究新范式[J]. 中国科学院院刊,2024, 39(1): 10-16.
|
[3] |
刘东,李庆,卢宗健,等. “华龙一号“设计分析软件包NESTOR的研发与应用[J]. 中国核电,2017, 10(4): 532-536.
|
[4] |
PRATAMA D A, BAKAR M A, ISMAIL N B, et al. ANN-based methods for solving partial differential equations: a survey[J]. Arab Journal of Basic and Applied Sciences, 2022, 29(1): 233-248. doi: 10.1080/25765299.2022.2104224
|
[5] |
查文舒, 李道伦,沈路航,等. 基于神经网络的偏微分方程求解方法研究综述[J]. 力学学报, 2022, 54(03): 543-556.
查文舒, 李道伦, 沈路航, 等. 基于神经网络的偏微分方程求解方法研究综述[J]. 力学学报, 2022, 54(03): 543-556.
|
[6] |
CARTER J, FEDDEMA J, KOTHE D, et al. Advanced research directions on AI for science, energy, and security: report on summer 2022 workshops[R]. Argonne: Argonne National Laboratory, 2023: 1-206.
|
[7] |
E W N, HAN J Q, JENTZEN A. Algorithms for solving high dimensional PDEs: from nonlinear Monte Carlo to machine learning[J]. Nonlinearity, 2022, 35(1): 278-310. doi: 10.1088/1361-6544/ac337f
|
[8] |
DISSANAYAKE M W M G, PHAN-THIEN N. Neural-network-based approximations for solving partial differential equations[J]. Communications in Numerical Methods in Engineering, 1994, 10(3): 195-201. doi: 10.1002/cnm.1640100303
|
[9] |
LAGARIS I E, LIKAS A, FOTIADIS D I. Artificial neural networks for solving ordinary and partial differential equations[J]. IEEE Transactions on Neural Networks, 1998, 9(5): 987-1000. doi: 10.1109/72.712178
|
[10] |
BAYDIN A G, PEARLMUTTER B A, RADUL A A, et al. Automatic differentiation in machine learning: a survey[J]. Journal of Machine Learning Research, 2018, 18(153): 1-43.
|
[11] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
|
[12] |
HAGAN M T. DEMUTH H B. Neural network design [M]. Oklahoma: Martin Hagan, 2nd Edition, 2014: 8-20.
|
[13] |
吕涛,黄晋. 积分方程的高精度算法[M]. 北京: 科学出版社,2013: 3-12.
|
[14] |
周蜀林. 偏微分方程[M]. 北京: 北京大学出版社,2005: 1-16.
|
[15] |
JIN X W, CAI S Z, LI H, et al. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951. doi: 10.1016/j.jcp.2020.109951
|
[16] |
张恒,吕雪,刘东,等. 核电人工智能应用: 现状、挑战和机遇[J]. 核动力工程,2023, 44(1): 1-8.
|
[17] |
谭思超,李桐,刘永超,等. 关于人工智能在核能领域应用的若干思考[J]. 核动力工程,2023, 44(2): 1-8.
|
[18] |
ELHAREEF M H, WU Z Y. Physics-informed neural network method and application to nuclear reactor calculations: a pilot study[J]. Nuclear Science and Engineering, 2023, 197(4): 601-622. doi: 10.1080/00295639.2022.2123211
|
[19] |
FERNANDEZ M G, TOKUHIRO A, WELTER K, et al. Nuclear energy system’s behavior and decision making using machine learning[J]. Nuclear Engineering and Design, 2017, 324: 27-34. doi: 10.1016/j.nucengdes.2017.08.020
|
[20] |
胡泽华,应阳君,勇珩,等. 深度神经网络学习快中子截面[J]. 原子能科学技术,2023, 57(4): 812-817. doi: 10.7538/yzk.2022.youxian.0845
|
[21] |
王东东,杨红义,王端,等. 中国实验快堆热工参数的自适应BP神经网络预测方法研究[J]. 原子能科学技术,2020, 54(10): 1809-1816. doi: 10.7538/yzk.2019.youxian.0751
|
[22] |
蔡宛睿,夏虹,杨波. 基于BP神经网络的堆芯三维功率重构方法研究[J]. 原子能科学技术,2018, 52(12): 2130-2135. doi: 10.7538/yzk.2018.youxian.0163
|
[23] |
王端,王威策,潘翠杰,等. 基于自适应BP神经网络的压水堆堆芯换料关键参数的预测方法[J]. 原子能科学技术,2020, 54(1): 112-118. doi: 10.7538/yzk.2019.youxian.0016
|
[24] |
MA Y C, KONG D X, ZHANG J, et al. Study on flow regime prediction model for water-cooled reactor core based on machine learning algorithms[J]. Annals of Nuclear Energy, 2024, 201: 110428. doi: 10.1016/j.anucene.2024.110428
|
[25] |
HE S P, WANG M J, ZHANG J, et al. A deep-learning reduced-order model for thermal hydraulic characteristics rapid estimation of steam generators[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123424. doi: 10.1016/j.ijheatmasstransfer.2022.123424
|
[26] |
ZHANG J, MA Y C, WANG M J, et al. Prediction of flow boiling heat transfer coefficient in horizontal channels varying from conventional to small-diameter scales by genetic neural network[J]. Nuclear Engineering and Technology, 2019, 51(8): 1897-1904. doi: 10.1016/j.net.2019.06.009
|
[27] |
ZHANG J, CHEN R H, WANG M J, et al. Prediction of LBB leakage for various conditions by genetic neural network and genetic algorithms[J]. Nuclear Engineering and Design, 2017, 325: 33-43. doi: 10.1016/j.nucengdes.2017.09.027
|
[28] |
章静,丛腾龙,苏光辉,等. 遗传神经网络对水平通道流动沸腾传热系数的预测[J]. 原子能科学技术,2015, 49(1): 70-76. doi: 10.7538/yzk.2015.49.01.0070
|
[29] |
MENG X H, LI Z, ZHANG D K, et al. PPINN: parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113250. doi: 10.1016/j.cma.2020.113250
|
[30] |
XIE Y C, MA Y, WANG Y H. Automatic boundary fitting framework of boundary dependent physics-informed neural network solving partial differential equation with complex boundary conditions[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 414: 116139. doi: 10.1016/j.cma.2023.116139
|
[31] |
XIE Y C, WANG Y H, MA Y, et al. Neural network based deep learning method for multi-dimensional neutron diffusion problems with novel treatment to boundary[J]. Journal of Nuclear Engineering, 2021, 2(4): 533-552. doi: 10.3390/jne2040036
|
[32] |
刘东,唐雷,安萍,等. 核反应堆有效增殖系数深度学习直接搜索求解方法[J]. 核动力工程,2023, 44(5): 6-14.
|
[33] |
刘东,王雪强,张斌,等. 深度学习方法求解中子输运方程的微分变阶理论[J]. 原子能科学技术,2023, 57(5): 946-959. doi: 10.7538/yzk.2023.youxian.0002
|
[34] |
XIE Y C, CHI H H, WANG Y H, et al. Physics-specialized neural network with hard constraints for solving multi-material diffusion problems[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 430: 117223. doi: 10.1016/j.cma.2024.117223
|
[35] |
YAO Y Z, GUO J W, GU T X. A deep learning method for multi-material diffusion problems based on physics-informed neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 417: 116395. doi: 10.1016/j.cma.2023.116395
|
[36] |
YANG Q H, YANG Y, DENG Y T, et al. Physics-constrained neural network for solving discontinuous interface K-eigenvalue problem with application to reactor physics[J]. Nuclear Science and Techniques, 2023, 34(10): 161. doi: 10.1007/s41365-023-01313-0
|
[37] |
YANG Q H, DENG Y T, YANG Y, et al. Neural networks based on power method and inverse power method for solving linear eigenvalue problems[J]. Computers & Mathematics with Applications, 2023, 147: 14-24.
|
[38] |
刘东,安萍,江勇,等. 一种基于深度学习驱动的反应堆堆芯功率重构方法: 中国,CN202410409395.4[P]. 2024-04-07.
|
[39] |
LIU D, ZHANG B, JIANG Y, et al. Deep learning driven inverse solving method for neutron diffusion equations and three-dimensional core power reconstruction technology[J]. Nuclear Engineering and Design, 2024, 429: 113590. doi: 10.1016/j.nucengdes.2024.113590
|
[40] |
张英逊,王方元,李理,等. 利用机器学习研究中低能重离子碰撞中的物理问题[J]. 原子能科学技术,2023, 57(4): 751-761. doi: 10.7538/yzk.2023.youxian.0043
|