Advance Search
Volume 46 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
Liu Dong, Tian Wenxi, Liu Xiaojing, Hao Chen, Peng Hang, Yu Yang, Xiao Cong. Research and Prospects of Artificial Intelligence Scientific Computing for Nuclear Industry[J]. Nuclear Power Engineering, 2025, 46(2): 1-13. doi: 10.13832/j.jnpe.2024.09.0027
Citation: Liu Dong, Tian Wenxi, Liu Xiaojing, Hao Chen, Peng Hang, Yu Yang, Xiao Cong. Research and Prospects of Artificial Intelligence Scientific Computing for Nuclear Industry[J]. Nuclear Power Engineering, 2025, 46(2): 1-13. doi: 10.13832/j.jnpe.2024.09.0027

Research and Prospects of Artificial Intelligence Scientific Computing for Nuclear Industry

doi: 10.13832/j.jnpe.2024.09.0027
  • Received Date: 2024-09-30
  • Accepted Date: 2024-12-09
  • Rev Recd Date: 2024-12-09
  • Available Online: 2025-01-17
  • Publish Date: 2025-04-02
  • Scientific computation is pivotal throughout the nuclear industry's technical framework, encompassing everything from the creation of nuclear databases to the design, analysis, validation, and operation of nuclear power engineering, as well as the reprocessing of nuclear fuel and the decommissioning of reactors. Historically, the scientific computing paradigm in the industrial field is mainly based on statistical methods for modeling experimental measurement data, as well as numerical computing methods represented by solving differential/integral equations. As artificial intelligence (AI) technology advances, leveraging AI for scientific computation is emerging as a novel paradigm. This paper introduces the basic principles and main features of this emerging technology field, focusing on the characteristics of the nuclear industry. It summarizes the current research work and analyzes the advantages and disadvantages of artificial intelligence scientific computing methods compared to traditional methods. The paper concludes with a prospective look at the future development trends of intelligent computation in the nuclear field, along with potential application scenarios, offering insights to foster the evolution of AI in scientific computation within the nuclear industry.

     

  • loading
  • [1]
    汤涛. 科学计算的历史与展望[J]. 计算物理,2023, 40(1): 4-13.
    [2]
    鄂维南. AI助力打造科学研究新范式[J]. 中国科学院院刊,2024, 39(1): 10-16.
    [3]
    刘东,李庆,卢宗健,等. “华龙一号“设计分析软件包NESTOR的研发与应用[J]. 中国核电,2017, 10(4): 532-536.
    [4]
    PRATAMA D A, BAKAR M A, ISMAIL N B, et al. ANN-based methods for solving partial differential equations: a survey[J]. Arab Journal of Basic and Applied Sciences, 2022, 29(1): 233-248. doi: 10.1080/25765299.2022.2104224
    [5]
    查文舒, 李道伦,沈路航,等. 基于神经网络的偏微分方程求解方法研究综述[J]. 力学学报, 2022, 54(03): 543-556.

    查文舒, 李道伦, 沈路航, 等. 基于神经网络的偏微分方程求解方法研究综述[J]. 力学学报, 2022, 54(03): 543-556.
    [6]
    CARTER J, FEDDEMA J, KOTHE D, et al. Advanced research directions on AI for science, energy, and security: report on summer 2022 workshops[R]. Argonne: Argonne National Laboratory, 2023: 1-206.
    [7]
    E W N, HAN J Q, JENTZEN A. Algorithms for solving high dimensional PDEs: from nonlinear Monte Carlo to machine learning[J]. Nonlinearity, 2022, 35(1): 278-310. doi: 10.1088/1361-6544/ac337f
    [8]
    DISSANAYAKE M W M G, PHAN-THIEN N. Neural-network-based approximations for solving partial differential equations[J]. Communications in Numerical Methods in Engineering, 1994, 10(3): 195-201. doi: 10.1002/cnm.1640100303
    [9]
    LAGARIS I E, LIKAS A, FOTIADIS D I. Artificial neural networks for solving ordinary and partial differential equations[J]. IEEE Transactions on Neural Networks, 1998, 9(5): 987-1000. doi: 10.1109/72.712178
    [10]
    BAYDIN A G, PEARLMUTTER B A, RADUL A A, et al. Automatic differentiation in machine learning: a survey[J]. Journal of Machine Learning Research, 2018, 18(153): 1-43.
    [11]
    RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [12]
    HAGAN M T. DEMUTH H B. Neural network design [M]. Oklahoma: Martin Hagan, 2nd Edition, 2014: 8-20.
    [13]
    吕涛,黄晋. 积分方程的高精度算法[M]. 北京: 科学出版社,2013: 3-12.
    [14]
    周蜀林. 偏微分方程[M]. 北京: 北京大学出版社,2005: 1-16.
    [15]
    JIN X W, CAI S Z, LI H, et al. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951. doi: 10.1016/j.jcp.2020.109951
    [16]
    张恒,吕雪,刘东,等. 核电人工智能应用: 现状、挑战和机遇[J]. 核动力工程,2023, 44(1): 1-8.
    [17]
    谭思超,李桐,刘永超,等. 关于人工智能在核能领域应用的若干思考[J]. 核动力工程,2023, 44(2): 1-8.
    [18]
    ELHAREEF M H, WU Z Y. Physics-informed neural network method and application to nuclear reactor calculations: a pilot study[J]. Nuclear Science and Engineering, 2023, 197(4): 601-622. doi: 10.1080/00295639.2022.2123211
    [19]
    FERNANDEZ M G, TOKUHIRO A, WELTER K, et al. Nuclear energy system’s behavior and decision making using machine learning[J]. Nuclear Engineering and Design, 2017, 324: 27-34. doi: 10.1016/j.nucengdes.2017.08.020
    [20]
    胡泽华,应阳君,勇珩,等. 深度神经网络学习快中子截面[J]. 原子能科学技术,2023, 57(4): 812-817. doi: 10.7538/yzk.2022.youxian.0845
    [21]
    王东东,杨红义,王端,等. 中国实验快堆热工参数的自适应BP神经网络预测方法研究[J]. 原子能科学技术,2020, 54(10): 1809-1816. doi: 10.7538/yzk.2019.youxian.0751
    [22]
    蔡宛睿,夏虹,杨波. 基于BP神经网络的堆芯三维功率重构方法研究[J]. 原子能科学技术,2018, 52(12): 2130-2135. doi: 10.7538/yzk.2018.youxian.0163
    [23]
    王端,王威策,潘翠杰,等. 基于自适应BP神经网络的压水堆堆芯换料关键参数的预测方法[J]. 原子能科学技术,2020, 54(1): 112-118. doi: 10.7538/yzk.2019.youxian.0016
    [24]
    MA Y C, KONG D X, ZHANG J, et al. Study on flow regime prediction model for water-cooled reactor core based on machine learning algorithms[J]. Annals of Nuclear Energy, 2024, 201: 110428. doi: 10.1016/j.anucene.2024.110428
    [25]
    HE S P, WANG M J, ZHANG J, et al. A deep-learning reduced-order model for thermal hydraulic characteristics rapid estimation of steam generators[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123424. doi: 10.1016/j.ijheatmasstransfer.2022.123424
    [26]
    ZHANG J, MA Y C, WANG M J, et al. Prediction of flow boiling heat transfer coefficient in horizontal channels varying from conventional to small-diameter scales by genetic neural network[J]. Nuclear Engineering and Technology, 2019, 51(8): 1897-1904. doi: 10.1016/j.net.2019.06.009
    [27]
    ZHANG J, CHEN R H, WANG M J, et al. Prediction of LBB leakage for various conditions by genetic neural network and genetic algorithms[J]. Nuclear Engineering and Design, 2017, 325: 33-43. doi: 10.1016/j.nucengdes.2017.09.027
    [28]
    章静,丛腾龙,苏光辉,等. 遗传神经网络对水平通道流动沸腾传热系数的预测[J]. 原子能科学技术,2015, 49(1): 70-76. doi: 10.7538/yzk.2015.49.01.0070
    [29]
    MENG X H, LI Z, ZHANG D K, et al. PPINN: parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113250. doi: 10.1016/j.cma.2020.113250
    [30]
    XIE Y C, MA Y, WANG Y H. Automatic boundary fitting framework of boundary dependent physics-informed neural network solving partial differential equation with complex boundary conditions[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 414: 116139. doi: 10.1016/j.cma.2023.116139
    [31]
    XIE Y C, WANG Y H, MA Y, et al. Neural network based deep learning method for multi-dimensional neutron diffusion problems with novel treatment to boundary[J]. Journal of Nuclear Engineering, 2021, 2(4): 533-552. doi: 10.3390/jne2040036
    [32]
    刘东,唐雷,安萍,等. 核反应堆有效增殖系数深度学习直接搜索求解方法[J]. 核动力工程,2023, 44(5): 6-14.
    [33]
    刘东,王雪强,张斌,等. 深度学习方法求解中子输运方程的微分变阶理论[J]. 原子能科学技术,2023, 57(5): 946-959. doi: 10.7538/yzk.2023.youxian.0002
    [34]
    XIE Y C, CHI H H, WANG Y H, et al. Physics-specialized neural network with hard constraints for solving multi-material diffusion problems[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 430: 117223. doi: 10.1016/j.cma.2024.117223
    [35]
    YAO Y Z, GUO J W, GU T X. A deep learning method for multi-material diffusion problems based on physics-informed neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 417: 116395. doi: 10.1016/j.cma.2023.116395
    [36]
    YANG Q H, YANG Y, DENG Y T, et al. Physics-constrained neural network for solving discontinuous interface K-eigenvalue problem with application to reactor physics[J]. Nuclear Science and Techniques, 2023, 34(10): 161. doi: 10.1007/s41365-023-01313-0
    [37]
    YANG Q H, DENG Y T, YANG Y, et al. Neural networks based on power method and inverse power method for solving linear eigenvalue problems[J]. Computers & Mathematics with Applications, 2023, 147: 14-24.
    [38]
    刘东,安萍,江勇,等. 一种基于深度学习驱动的反应堆堆芯功率重构方法: 中国,CN202410409395.4[P]. 2024-04-07.
    [39]
    LIU D, ZHANG B, JIANG Y, et al. Deep learning driven inverse solving method for neutron diffusion equations and three-dimensional core power reconstruction technology[J]. Nuclear Engineering and Design, 2024, 429: 113590. doi: 10.1016/j.nucengdes.2024.113590
    [40]
    张英逊,王方元,李理,等. 利用机器学习研究中低能重离子碰撞中的物理问题[J]. 原子能科学技术,2023, 57(4): 751-761. doi: 10.7538/yzk.2023.youxian.0043
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (35) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return