Advance Search
Volume 46 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
Ma Yichao, Kong Dexiang, Tian Wenxi, Zhang Jing, Wu Yingwei, Qiu Suizheng, Su Guanghui. Development of Prediction Model for Two-phase Flow Regime in Nuclear Reactor Core Based on Artificial Neural Network[J]. Nuclear Power Engineering, 2025, 46(2): 156-163. doi: 10.13832/j.jnpe.2024.090038
Citation: Ma Yichao, Kong Dexiang, Tian Wenxi, Zhang Jing, Wu Yingwei, Qiu Suizheng, Su Guanghui. Development of Prediction Model for Two-phase Flow Regime in Nuclear Reactor Core Based on Artificial Neural Network[J]. Nuclear Power Engineering, 2025, 46(2): 156-163. doi: 10.13832/j.jnpe.2024.090038

Development of Prediction Model for Two-phase Flow Regime in Nuclear Reactor Core Based on Artificial Neural Network

doi: 10.13832/j.jnpe.2024.090038
  • Received Date: 2024-09-16
  • Rev Recd Date: 2024-10-27
  • Available Online: 2025-01-15
  • Publish Date: 2025-04-02
  • To fully leverage the increasing experimental data on flow regimes to expand model applicability and improve prediction accuracy, this study collected experimental data, established a training database, and performed data preprocessing. A two-phase flow regime prediction model was developed based on the artificial neural network (ANN) algorithm. The model's prediction accuracy in various flow directions was analyzed and compared with traditional flow regime prediction models. The results show that the new model achieves an average accuracy of 88.56% on the training set and 87.86% on the test set. The proposed model can be directly applied to various operating conditions without causing misclassification of flow regimes in different directions. Compared to the Ishii model, Mandhane model, and Taitel model, the ANN-based model demonstrates superior prediction accuracy. This study provides a novel method for flow regime prediction, and with the continuous updating of training data, the applicability and accuracy of the model can be further improved.

     

  • loading
  • [1]
    BAKER O. Design of pipelines for the simultaneous flow of oil and gas[C]//Fall Meeting of the Petroleum Branch of AIME. Dallas: OnePetro, 1953.
    [2]
    HEWITT G F, HALL-TAYLOR N S. Annular Two-Phase Flow[M]. New York: Pergamon Press, 1970: 4-20.
    [3]
    MANDHANE J M, GREGORY G A, AZIZ K. A flow pattern map for gas-liquid flow in horizontal pipes[J]. International Journal of Multiphase Flow, 1974, 1(4): 537-553. doi: 10.1016/0301-9322(74)90006-8
    [4]
    TAITEL Y, DUKLER A E. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow[J]. AIChE Journal, 1976, 22(1): 47-55. doi: 10.1002/aic.690220105
    [5]
    TAITEL Y, BARNEA D, DUKLER A E. Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes[J]. AIChE Journal, 1980, 26(3): 345-354. doi: 10.1002/aic.690260304
    [6]
    BARNEA D, SHOHAM O, TAITEL Y, et al. Flow pattern transition for gas-liquid flow in horizontal and inclined pipes. Comparison of experimental data with theory[J]. International Journal of Multiphase Flow, 1980, 6(3): 217-225. doi: 10.1016/0301-9322(80)90012-9
    [7]
    BARNEA D. A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations[J]. International Journal of Multiphase Flow, 1987, 13(1): 1-12. doi: 10.1016/0301-9322(87)90002-4
    [8]
    VENKATESWARARAO P, SEMIAT R, DUKLER A E. Flow pattern transition for gas-liquid flow in a vertical rod bundle[J]. International Journal of Multiphase Flow, 1982, 8(5): 509-524. doi: 10.1016/0301-9322(82)90021-0
    [9]
    LEE J Y, ISHII M, KIM N S. Instantaneous and objective flow regime identification method for the vertical upward and downward co-current two-phase flow[J]. International Journal of Heat and Mass Transfer, 2008, 51(13-14): 3442-3459. doi: 10.1016/j.ijheatmasstransfer.2007.10.037
    [10]
    PARANJAPE S, CHEN S W, HIBIKI T, et al. Flow regime identification under adiabatic upward two-phase flow in a vertical rod bundle geometry[J]. Journal of Fluids Engineering, 2011, 133(9): 091302. doi: 10.1115/1.4004836
    [11]
    PAN L M, ZHANG M H, JU P, et al. Vertical co-current two-phase flow regime identification using fuzzy C-means clustering algorithm and ReliefF attribute weighting technique[J]. International Journal of Heat and Mass Transfer, 2016, 95: 393-404. doi: 10.1016/j.ijheatmasstransfer.2015.11.081
    [12]
    OUYANG L, JIN N D, REN W K. A new deep neural network framework with multivariate time series for two-phase flow pattern identification[J]. Expert Systems with Applications, 2022, 205: 117704. doi: 10.1016/j.eswa.2022.117704
    [13]
    张立峰,王智. 基于多元经验模态分解与卷积神经网络的气液两相流流型识别[J]. 计量学报,2023, 44(1): 73-79. doi: 10.3969/j.issn.1000-1158.2023.01.11
    [14]
    朱隆祥,张卢腾,孙皖,等. 基于非监督机器学习方法的竖直环形流道流动沸腾流型研究[J]. 核动力工程,2023, 44(3): 112-120.
    [15]
    ROTH G A, AYDOGAN F. Theory and implementation of nuclear safety system codes–Part I: conservation equations, flow regimes, numerics and significant assumptions[J]. Progress in Nuclear Energy, 2014, 76: 160-182. doi: 10.1016/j.pnucene.2014.05.011
    [16]
    The RELAP5-3D© Code Development Team. RELAP5-3D© code manual volume I: code structure, system models, and solution methods: Technical Report No. INEEL-EXT-98-00834[R]. Idaho Falls: Idaho National Laboratory, 2014.
    [17]
    PHUNG V A, KUDINOV P. Prediction of flow regimes and thermal hydraulic parameters in two-phase natural circulation by RELAP5 and TRACE codes[J]. Science and Technology of Nuclear Installations, 2015, 2015: 296317.
    [18]
    BARNEA D, LUNINSKI Y, TAITEL Y. Flow pattern in horizontal and vertical two phase flow in small diameter pipes[J]. The Canadian Journal of Chemical Engineering, 1983, 61(5): 617-620. doi: 10.1002/cjce.5450610501
    [19]
    YANG Z J, DANG Z R, YANG X H, et al. Downward two phase flow experiment and general flow regime transition criteria for various pipe sizes[J]. International Journal of Heat and Mass Transfer, 2018, 125: 179-189. doi: 10.1016/j.ijheatmasstransfer.2018.03.072
    [20]
    MIZUTANI Y, TOMIYAMA A, HOSOKAWA S, et al. Two-phase flow patterns in a four by four rod bundle[J]. Journal of Nuclear Science and Technology, 2007, 44(6): 894-901. doi: 10.1080/18811248.2007.9711327
    [21]
    ZHOU Y L, HOU Y D, LI H W, et al. Flow pattern map and multi-scale entropy analysis in 3×3 rod bundle channel[J]. Annals of Nuclear Energy, 2015, 80: 144-150. doi: 10.1016/j.anucene.2015.02.006
    [22]
    苏光辉,秋穗正,田文喜,等. 核动力系统热工水力计算方法[M]. 北京: 清华大学出版社,2013:201-204.
    [23]
    PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: machine learning in Python[J]. The Journal of Machine Learning Research, 2011, 12: 2825-2830.
    [24]
    ISHII M, PARANJAPE S S, KIM S, et al. Interfacial structures and interfacial area transport in downward two-phase bubbly flow[J]. International Journal of Multiphase Flow, 2004, 30(7-8): 779-801. doi: 10.1016/j.ijmultiphaseflow.2004.04.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (41) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return