Citation: | Yu Caiyang, Jiang Yong, Chen Qilong, Liu Dong, Lyu Jiancheng. Research on Efficient Solution of Neutron Physics Equations Using NAS-Optimized PINN[J]. Nuclear Power Engineering, 2025, 46(2): 119-126. doi: 10.13832/j.jnpe.2024.090041 |
[1] |
LISZKA T, ORKISZ J. The finite difference method at arbitrary irregular grids and its application in applied mechanics[J]. Computers & Structures, 1980, 11(1-2): 83-95.
|
[2] |
DOUGLAS JR J, RUSSELL T F. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures[J]. SIAM Journal on Numerical Analysis, 1982, 19(5): 871-885. doi: 10.1137/0719063
|
[3] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
|
[4] |
刘振海,张涛,齐飞鹏,等. 基于PINN的燃料棒稳态温度分布快速预测方法研究[J]. 核动力工程,2024, 45(S1): 39-44. doi: 10.13832/j.jnpe.2024.S1.0039.
|
[5] |
杜轲,齐婧,高嘉伟,等. 基于物理信息神经网络(PINN)方法的结构动力响应分析[J/OL]. 工程力学,1-12[2024-10-20]. http://kns.cnki.net/kcms/detail/11.2595.o3.20240822.1525.006.html.
|
[6] |
REN P Z, XIAO Y, CHANG X J, et al. A comprehensive survey of neural architecture search: challenges and solutions[J]. ACM Computing Surveys, 2022, 54(4): 76.
|
[7] |
CHEN X, XIE L X, WU J, et al. Progressive DARTs: bridging the optimization gap for NAS in the wild[J]. International Journal of Computer Vision, 2021, 129(3): 638-655. doi: 10.1007/s11263-020-01396-x
|
[8] |
MIRJALILI S. Genetic algorithm[J]. Studies in Computational Intelligence, 2019, 780: 43–55.
|
[9] |
刘东,罗琦,唐雷,等. 基于PINN深度机器学习技术求解多维中子学扩散方程[J]. 核动力工程,2022, 43(2): 1-8.
|
[10] |
曾付林,张小龙,赵鹏程. 基于hp-VPINN的反应堆中子扩散计算方法研究[J]. 核动力工程,2024, 45(2): 53-62.
|
[11] |
刘东,王雪强,张斌,等. 深度学习方法求解中子输运方程的微分变阶理论[J]. 原子能科学技术,2023, 57(5): 946-959. doi: 10.7538/yzk.2023.youxian.0002
|
[12] |
杜书华. 输运问题的计算机模拟[M]. 长沙: 湖南科学技术出版社,1989: 102-104.
|
[13] |
谢仲生,曹良志,张少泓. 核反应堆物理分析[M]. 第五版. 西安: 西安交通大学出版社,2020: 69-90.
|
[14] |
王伟国,李云召,秦浚玮,等. 基于中子电报方程的均匀裸堆瞬态中子输运问题解析解研究[J]. 核动力工程,2024, 45(2): 42-46.
|
[15] |
JAVAHERIPI M, DE ROSA G H, MUKHERJEE S, et al. LiteTransformerSearch: training-free neural architecture search for efficient language models[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc. , 2022: 24254-24267.
|
[16] |
程金芮,金瑾,张朝龙,等. 自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用[J]. 计算机应用,2024, 44(S1): 60-64.
|
[17] |
JAAFRA Y, LAUREN J L, DERUYVER A, et al. Reinforcement learning for neural architecture search: a review[J]. Image and Vision Computing, 2019, 89: 57-66. doi: 10.1016/j.imavis.2019.06.005
|
[18] |
YU C Y, WANG Y X, TANG C W, et al. EU-Net: automatic U-Net neural architecture search with differential evolutionary algorithm for medical image segmentation[J]. Computers in Biology and Medicine, 2023, 167: 107579. doi: 10.1016/j.compbiomed.2023.107579
|
[19] |
YE P, LI B P, LI Y K, et al. β-DARTS: beta-decay regularization for differentiable architecture search[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 10864-10873.
|
[20] |
XUE Y, CHEN C, SŁOWIK A. Neural architecture search based on a multi-objective evolutionary algorithm with probability stack[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(4): 778-786. doi: 10.1109/TEVC.2023.3252612
|
[21] |
华东师范大学数学系. 数学分析下册[M]. 第三版. 北京: 高等教育出版社,2001: 176-243.
|