Advance Search
Volume 45 Issue S2
Jan.  2025
Turn off MathJax
Article Contents
Wang Bo, Zhao Wenbo, Zhang Hongbo, Zhao Chen, Chen Zhang, Liu Kun, Zhang Lerui, Gong Zhaohu, Zeng Wei, Li Qing. Validation of HPR1000 Core Modeling and Startup Test with Three-dimensional Characteristic Neutronics Calculation Code SHARK[J]. Nuclear Power Engineering, 2024, 45(S2): 42-48. doi: 10.13832/j.jnpe.2024.S2.0042
Citation: Wang Bo, Zhao Wenbo, Zhang Hongbo, Zhao Chen, Chen Zhang, Liu Kun, Zhang Lerui, Gong Zhaohu, Zeng Wei, Li Qing. Validation of HPR1000 Core Modeling and Startup Test with Three-dimensional Characteristic Neutronics Calculation Code SHARK[J]. Nuclear Power Engineering, 2024, 45(S2): 42-48. doi: 10.13832/j.jnpe.2024.S2.0042

Validation of HPR1000 Core Modeling and Startup Test with Three-dimensional Characteristic Neutronics Calculation Code SHARK

doi: 10.13832/j.jnpe.2024.S2.0042
  • Received Date: 2024-08-13
  • Rev Recd Date: 2024-10-22
  • Publish Date: 2025-01-06
  • To validate the accuracy and applicability of the three-dimensional characteristic neutronics calculation code SHARK for large PWRs, the startup test of HPR1000 is selected. The HPR1000 is a third-generation nuclear pressurized water reactor with independent intellectual property rights in China. The validation contents include critical effective multiplication coefficient keff, control rod integral value and assembly power distribution. The results show that the critical effective multiplication coefficient keff, assembly power distribution and control rod integral value are in good agreement with the measured values. Therefore, the code SHARK can be applied to the physical calculation of digital reactors with good calculation accuracy.

     

  • loading
  • [1]
    梁亮. 基于特征线方法的2D/1D及2D/3D耦合中子输运计算方法研究[D]. 西安: 西安交通大学,2017.
    [2]
    赵晨. 二维/一维耦合特征线方法的改进及在数值反应堆物理计算中的应用[D]. 西安: 西安交通大学,2019.
    [3]
    HURSIN M. Full core, heterogeneous, time dependent neutron transport calculations with the 3D code DeCART[D]. U.S.: University of California at Berkeley, 2010.
    [4]
    JUNG Y S. Development of practical numerical nuclear reactor for high fidelity core analysis[D]. Korea: Seoul National University, 2013.
    [5]
    Choi S, Choe J, Nguyen K, et al. Recent development status of neutron transport code STREAM[C]//Transactions of the Korean Nuclear Society Spring Meeting. Jeju:Korean Nuclear Society, 2019.
    [6]
    KELLEY B W, LARSEN E W. 2D/1D approximations to the 3D neutron transport equation. I: theory[C]//2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. Sun Valley: U. S. Department of Energy, 2013.
    [7]
    CHEN J, LIU Z Y, ZHAO C, et al. A new high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2018, 116: 417-428. doi: 10.1016/j.anucene.2018.02.049
    [8]
    ZHANG H B, PENG X J, ZHAO C, et al. Subgroup method for the high fidelity neutronics code SHARK and preliminary benchmarking[J]. Nuclear Engineering and Design, 2023, 408: 112308. doi: 10.1016/j.nucengdes.2023.112308
    [9]
    赵晨,赵文博,张宏博,等. 基于数字化反应堆物理计算程序SHARK的一步法输运计算方法研究[J]. 核动力工程,2023, 44(4): 33-40, doi: 10.13832/j.jnpe.2023.04.0033.
    [10]
    张知竹,廖鸿宽,李庆,等. 华龙一号LPD在线监测系统误差分析[J]. 核动力工程,2020, 41(2): 11-15.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (61) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return