Advance Search
Volume 45 Issue S2
Jan.  2025
Turn off MathJax
Article Contents
Deng Jian, Wei Zonglan, Zeng Wei, Li Songwei, Qiu Zhifang, Liu Luguo. Development and Application of Autonomous Computational Fluid Dynamics Code WINGS-CFD for Nuclear Reactors[J]. Nuclear Power Engineering, 2024, 45(S2): 63-69. doi: 10.13832/j.jnpe.2024.S2.0063
Citation: Deng Jian, Wei Zonglan, Zeng Wei, Li Songwei, Qiu Zhifang, Liu Luguo. Development and Application of Autonomous Computational Fluid Dynamics Code WINGS-CFD for Nuclear Reactors[J]. Nuclear Power Engineering, 2024, 45(S2): 63-69. doi: 10.13832/j.jnpe.2024.S2.0063

Development and Application of Autonomous Computational Fluid Dynamics Code WINGS-CFD for Nuclear Reactors

doi: 10.13832/j.jnpe.2024.S2.0063
  • Received Date: 2024-02-27
  • Rev Recd Date: 2024-09-24
  • Publish Date: 2025-01-06
  • To meet the requirements of high-precision numerical simulation of reactor flow and heat transfer, this article introduces WINGS-CFD (Workbench of Intelligent Nuclear reactor desiGn and Simulation-Computational Fluid Dynamics), an autonomous Computational Fluid Dynamics (CFD) code for nuclear reactors developed by Nuclear Power Institute of China, which is designed based on the object-oriented and hierarchical architecture principles with a high degree of extension. This article comprehensively outlines the overall design concepts of WINGS-CFD, covering aspects such as theoretical models, numerical discretization methods, and code architecture. Numerical calculations for typical reactor scenarios involving flow and heat transfer conditions are conducted using WINGS-CFD. The results show that the accuracy of WINGS-CFD calculation results is equivalent to that of commercial CFD code. WINGS-CFD has excellent parallel performance, which can support large-scale numerical simulation of billions of grids and coupled simulation of neutron transport and flow and heat transfer, and provides an autonomous numerical technique for refined multi-physical field analysis of reactor system.

     

  • loading
  • [1]
    陶文铨. 数值传热学[M]. 第二版. 西安: 西安交通大学出版社,2001: 14-21.
    [2]
    张兆顺,崔桂香,许春晓. 湍流理论与模拟[M]. 北京: 清华大学出版社,2005: 21-36.
    [3]
    魏宗岚,杜思佳,王啸宇,等. 基于CFD的燃料组件上管座阻力特性数值模拟研究[J]. 核动力工程,2017, 38(S2): 29-33.
    [4]
    赵伟,李燕,杜思佳,等. 华龙一号反应堆下腔室结构优化设计[J]. 核动力工程,2019, 40(2): 112-116.
    [5]
    ANSYS. CFX-solver manager user's guide[Z]. 2017.
    [6]
    CD-ADAPCO. USER GUIDE: STAR-CCM+ Version 15. 04[Z]. 2020.
    [7]
    POPE S B. Turbulent flows[M]. New York: Cambridge University Press, 2000: 182-189.
    [8]
    FERZIGER J H, PERIC M. Computational methods for fluid dynamics[M]. 2nd ed. Cham: Springer, 2001: 71-82.
    [9]
    BRANDT A. Multi-level adaptive solutions to boundary-value problems[J]. Mathematics of Computation, 1977, 31(138): 333-390. doi: 10.1090/S0025-5718-1977-0431719-X
    [10]
    SMAGORINSKY J. General circulation experiments with the primitive equations: I. The basic experiment[J]. Monthly Weather Review, 1963, 91(3): 99-164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
    [11]
    NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3): 183-200. doi: 10.1023/A:1009995426001
    [12]
    LAUNDER B, SHARMA B I. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc[J]. Letters in Heat and Mass Transfer, 1974, 1(2): 131-137. doi: 10.1016/0094-4548(74)90150-7
    [13]
    MENTER F R, KUNTZ M, LANGTRY R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (29) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return