Advance Search
Volume 45 Issue S2
Jan.  2025
Turn off MathJax
Article Contents
Luo Hanwen, Wang Hongbin, Xiong Jinbiao. Investigation of Pivotal Models for Subcooled Boiling Based on the Eulerian-Eulerian Framework[J]. Nuclear Power Engineering, 2024, 45(S2): 70-76. doi: 10.13832/j.jnpe.2024.S2.0070
Citation: Luo Hanwen, Wang Hongbin, Xiong Jinbiao. Investigation of Pivotal Models for Subcooled Boiling Based on the Eulerian-Eulerian Framework[J]. Nuclear Power Engineering, 2024, 45(S2): 70-76. doi: 10.13832/j.jnpe.2024.S2.0070

Investigation of Pivotal Models for Subcooled Boiling Based on the Eulerian-Eulerian Framework

doi: 10.13832/j.jnpe.2024.S2.0070
  • Received Date: 2024-07-23
  • Rev Recd Date: 2024-10-24
  • Publish Date: 2025-01-06
  • Wall boiling, interphase interaction and bubble coalescence/breakup models involved in the Eulerian-Eulerian two-fluid model framework within Computational Fluid Dynamics (CFD) are investigated. In the framework, the five-component wall boiling model is employed to account for the on-wall bubble behavior, including nucleation, growth, detachment, sliding and lift-off. The inhomogeneous multi-size group (iMUSIG) model is utilized to consider the bubble size distribution and its effects on interphase interaction. The Prince-Blanch model and Luo-Svendsen model are used to model the bubble coalescence/breakup. The model performance is assessed based on the DEBORA benchmark, which indicates that the models can accurately predict the distribution of void fraction and bubble size under the condition of high subcooling in normal operation of PWR. However, the void fraction in the pipe center in the case of low subcooling and high void fraction cannot be predicted. It is also found that the five-component model may underestimate the evaporation at the heated wall by comparing the calculated bubble velocity and liquid temperature with the measured ones.

     

  • loading
  • [1]
    JOSHI J B, NAYAK A K. Advances of computational fluid dynamics in nuclear reactor design and safety assessment[M]. Amsterdam: Elsevier, 2018: 261-263.
    [2]
    YUN B J, SPLAWSKI A, LO S, et al. Prediction of a subcooled boiling flow with advanced two-phase flow models[J]. Nuclear Engineering and Design, 2012, 253: 351-359. doi: 10.1016/j.nucengdes.2011.08.067
    [3]
    YANG G, ZHANG W C, BINAMA M, et al. Review on bubble dynamic of subcooled flow boiling-part b: Behavior and models[J]. International Journal of Thermal Sciences, 2023, 184: 108026. doi: 10.1016/j.ijthermalsci.2022.108026
    [4]
    CHUANG T J, HIBIKI T. Interfacial forces used in two-phase flow numerical simulation[J]. International Journal of Heat and Mass Transfer, 2017, 113: 741-754. doi: 10.1016/j.ijheatmasstransfer.2017.05.062
    [5]
    KURUL N, PODOWSKI M Z. Multidimensional effects in forced convection subcooled boiling[C]//International Heat Transfer Conference 9. Jerusalem: Begel House Inc. , 1990.
    [6]
    WANG H B, XIONG J B, WANG J. Development and assessment of five-component wall boiling heat flux partitioning model[J]. International Journal of Multiphase Flow, 2023, 158: 104306. doi: 10.1016/j.ijmultiphaseflow.2022.104306
    [7]
    LEMMERT M, CHAWLA J M. Influence of flow velocity on surface boiling heat transfer coefficient[M]//HAHNE E, GRIGULL U. Heat Transfer in Boiling. New York: Academic Press, 1977: 237-247.
    [8]
    KREPPER E, RZEHAK R. CFD for subcooled flow boiling: Simulation of DEBORA experiments[J]. Nuclear Engineering and Design, 2011, 241(9): 3851-3866. doi: 10.1016/j.nucengdes.2011.07.003
    [9]
    RANZ W E, MARSHALL W R JR. Evaporation from drops, part I[J]. Chemical Engineering Progress, 1952, 48(3): 141-146.
    [10]
    ISHII M, ZUBER N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J]. AIChE Journal, 1979, 25(5): 843-855. doi: 10.1002/aic.690250513
    [11]
    TOMIYAMA A, TAMAI H, ZUN I, et al. Transverse migration of single bubbles in simple shear flows[J]. Chemical Engineering Science, 2002, 57(11): 1849-1858. doi: 10.1016/S0009-2509(02)00085-4
    [12]
    BURNS A, FRANK T, HAMILL I, et al. The favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows[C]//5th International Conference on Multiphase Flow. Yokohama: ICMF, 2004.
    [13]
    FRANK T, ZWART P J, SHI J M, et al. Inhomogeneous MUSIG model – a population balance approach for polydispersed bubbly flows[C]//Proceedings of the International Conference “Nuclear Energy for New Europe 2005”. Bled: NSS, 2005.
    [14]
    LUO H A, SVENDSEN H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. doi: 10.1002/aic.690420505
    [15]
    PRINCE M J, BLANCH H W. Bubble coalescence and break-up in air-sparged bubble columns[J]. AIChE Journal, 1990, 36(10): 1485-1499. doi: 10.1002/aic.690361004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (29) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return