Advance Search
Volume 45 Issue S2
Jan.  2025
Turn off MathJax
Article Contents
Huang Tao, Zhu Dahuan, Zeng Wei, Fang Weiyang, Xiong Qingwen, Zhang Zhuo, Huang Qingyu. A Nuclear Reactor Accident Diagnosis Technology Integrating Expert Knowledge and Machine Learning Algorithms[J]. Nuclear Power Engineering, 2024, 45(S2): 144-149. doi: 10.13832/j.jnpe.2024.S2.0144
Citation: Huang Tao, Zhu Dahuan, Zeng Wei, Fang Weiyang, Xiong Qingwen, Zhang Zhuo, Huang Qingyu. A Nuclear Reactor Accident Diagnosis Technology Integrating Expert Knowledge and Machine Learning Algorithms[J]. Nuclear Power Engineering, 2024, 45(S2): 144-149. doi: 10.13832/j.jnpe.2024.S2.0144

A Nuclear Reactor Accident Diagnosis Technology Integrating Expert Knowledge and Machine Learning Algorithms

doi: 10.13832/j.jnpe.2024.S2.0144
  • Received Date: 2024-06-21
  • Rev Recd Date: 2024-09-05
  • Publish Date: 2025-01-06
  • The nuclear reactor accident diagnosis is the most important step in the accident handling process, and the diagnosis result directly determines the accident handling strategy. In this paper, a nuclear reactor accident diagnosis method is proposed, which combines expert knowledge and machine learning algorithms. Based on the existing mature expert knowledge, this method introduces machine learning diagnosis algorithms to realize the superposition of advantages and the complementarity of disadvantages of the two methods. In terms of expert knowledge diagnosis, the symptom-oriented accident diagnosis method is adopted to form a symptom-oriented expert knowledge base and an accident diagnosis function module based on expert knowledge; In terms of accident diagnosis based on machine learning algorithm, Extreme Gradient Boosting (XGBoost), Linear Support Vector Machines (SVM), Deep Feedforward Networks (DFN), and Long Short-Term Memory (LSTM) are used to establish the accident diagnosis model, and the voting mechanism algorithm is used to fuse all kinds of algorithms to form the machine learning intelligent diagnosis module. On this basis, this paper puts forward a diagnosis model based on expert knowledge, supplemented by machine learning intelligent diagnosis, and the verification is carried out using the Steam Generator Tube Rupture (SGTR) accident of HPR1000. The results prove the rationality of the method.

     

  • loading
  • [1]
    王晓龙,蔡琦,张晓奇,等. 基于多分类SVM的船用核动力装置主回路系统破口特征诊断技术研究[J]. 原子能科学技术,2014, 48(3): 462-468. doi: 10.7538/yzk.2014.48.03.0462
    [2]
    佘兢克,薛时雨,孙培伟,等. 基于深度学习的核电站事故预测及故障诊断方法[J]. 仪器仪表用户,2019, 26(12): 39-44. doi: 10.3969/j.issn.1671-1041.2019.12.010
    [3]
    钱虹,骆建波,金蔚霄,等. 报警触发式蒸汽发生器传热管破裂事故诊断专家系统的研究[J]. 核动力工程,2015, 36(1): 98-103.
    [4]
    潘进,丁强,江爱朋,等. 基于XGBoost的冷水机组不平衡数据故障诊断[J]. 机械强度,2021, 43(1): 27-33.
    [5]
    毛伟,余刃,陆古兵. 基于LS-SVM方法的某核电站主泵故障诊断[J]. 海军工程大学学报,2012, 24(5): 82-85. doi: 10.7495/j.issn.1009-3486.2012.05.017
    [6]
    许立武,李开成,肖贤贵,等. 基于深度前馈网络的电能质量复合扰动识别[J]. 电测与仪表,2020, 57(1): 62-69,130.
    [7]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [8]
    YANG Q H. Research on SVM remote sensing image classification based on parallelization[J]. Journal of Physics: Conference Series, 2021, 1852: 032009. doi: 10.1088/1742-6596/1852/3/032009
    [9]
    王丽华,谢阳阳,周子贤,等. 基于卷积神经网络的异步电机故障诊断[J]. 振动、测试与诊断,2017, 37(6): 1208-1215.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (24) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return