Citation: | Huang Tao, Zhu Dahuan, Zeng Wei, Fang Weiyang, Xiong Qingwen, Zhang Zhuo, Huang Qingyu. A Nuclear Reactor Accident Diagnosis Technology Integrating Expert Knowledge and Machine Learning Algorithms[J]. Nuclear Power Engineering, 2024, 45(S2): 144-149. doi: 10.13832/j.jnpe.2024.S2.0144 |
[1] |
王晓龙,蔡琦,张晓奇,等. 基于多分类SVM的船用核动力装置主回路系统破口特征诊断技术研究[J]. 原子能科学技术,2014, 48(3): 462-468. doi: 10.7538/yzk.2014.48.03.0462
|
[2] |
佘兢克,薛时雨,孙培伟,等. 基于深度学习的核电站事故预测及故障诊断方法[J]. 仪器仪表用户,2019, 26(12): 39-44. doi: 10.3969/j.issn.1671-1041.2019.12.010
|
[3] |
钱虹,骆建波,金蔚霄,等. 报警触发式蒸汽发生器传热管破裂事故诊断专家系统的研究[J]. 核动力工程,2015, 36(1): 98-103.
|
[4] |
潘进,丁强,江爱朋,等. 基于XGBoost的冷水机组不平衡数据故障诊断[J]. 机械强度,2021, 43(1): 27-33.
|
[5] |
毛伟,余刃,陆古兵. 基于LS-SVM方法的某核电站主泵故障诊断[J]. 海军工程大学学报,2012, 24(5): 82-85. doi: 10.7495/j.issn.1009-3486.2012.05.017
|
[6] |
许立武,李开成,肖贤贵,等. 基于深度前馈网络的电能质量复合扰动识别[J]. 电测与仪表,2020, 57(1): 62-69,130.
|
[7] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
|
[8] |
YANG Q H. Research on SVM remote sensing image classification based on parallelization[J]. Journal of Physics: Conference Series, 2021, 1852: 032009. doi: 10.1088/1742-6596/1852/3/032009
|
[9] |
王丽华,谢阳阳,周子贤,等. 基于卷积神经网络的异步电机故障诊断[J]. 振动、测试与诊断,2017, 37(6): 1208-1215.
|