Advance Search
Volume 45 Issue S2
Jan.  2025
Turn off MathJax
Article Contents
Li Hui, Zhang Yixiong, Bai Xiaoming, Shao Xuejiao, Fu Xiaolong, Yu Mingda. Numerical Simulation of RPV with Complex Mechanical Behaviors under Core-melting Accident[J]. Nuclear Power Engineering, 2024, 45(S2): 168-173. doi: 10.13832/j.jnpe.2024.S2.0168
Citation: Li Hui, Zhang Yixiong, Bai Xiaoming, Shao Xuejiao, Fu Xiaolong, Yu Mingda. Numerical Simulation of RPV with Complex Mechanical Behaviors under Core-melting Accident[J]. Nuclear Power Engineering, 2024, 45(S2): 168-173. doi: 10.13832/j.jnpe.2024.S2.0168

Numerical Simulation of RPV with Complex Mechanical Behaviors under Core-melting Accident

doi: 10.13832/j.jnpe.2024.S2.0168
  • Received Date: 2024-06-21
  • Rev Recd Date: 2024-09-23
  • Publish Date: 2025-01-06
  • After the severe loss of coolant accident (LOCA), the lower head of reactor pressure vessel (RPV) will be ablated by the core melt. Therefore, it is of great significance to simulate and analyze the ablation and complex mechanical behavior of the pressure vessel wall under the condition of core melt for the design, accident prevention and mitigation of RPV. This paper firstly presents the peridynamic formulation of coupling thermo-mechanical problem with crack propagation. Then, based on the peridyanmic framework, a simple and efficient moving boundary model is proposed. The abated status of the material points is directly characterized by introducing a scalar field, which makes it unnecessary to constantly update the calculation domain in the calculation process, thus improving the calculation efficiency. Finally, the present method is used to simulate the dynamic ablation of the core melt on the pressure vessel wall and the crack propagation of the pressure vessel under the action of internal pressure. The calculation results show that there are both elastic deformation and plastic deformation in RPV under the core melt accident, and there are also complex mechanical behaviors such as damage and fracture.

     

  • loading
  • [1]
    赵静,余红星,李锋. 1000MW级压水堆安全壳压力温度计算分析[J]. 核动力工程,2003, 24(5): 409-411,425. doi: 10.3969/j.issn.0258-0926.2003.05.003
    [2]
    ANDERSON M H, HERRANZ L E, CORRADINI M L. Experimental analysis of heat transfer within the AP600 containment under postulated accident conditions[J]. Nuclear Engineering and Design, 1998, 185(2-3): 153-172. doi: 10.1016/S0029-5493(98)00232-5
    [3]
    张龙飞,房保国,李凤宇. 全厂断电引发的严重事故中反应堆压力容器失效机理研究[J]. 原子能科学技术,2012, 46: 305-308. doi: 10.7538/yzk.2012.46.03.0305
    [4]
    THEOFANOUS T G, LIU C, ADDITION S, ANGELINI S, et al. In-vessel coolability and retention of a core melt[J]. Nuclear Engineering and Design, 1997, 169(1-3): 1-48. doi: 10.1016/S0029-5493(97)00009-5
    [5]
    关仲华,余红星,江光明. 堆芯熔融物在下腔室内冷却模型研究及缓解集热效应的对策[J]. 核动力工程,2008, 29(5): 72-76.
    [6]
    傅孝良,杨燕华,周卫华,杨晓. CAR 1000的IVR有效性评价堆芯融化及熔池形成过程分析[J]. 核动力工程,2010, 31(5): 102-107.
    [7]
    TSAI F J, LEE M, LIU H C. Simulation of the in-vessel retention device heat-removal capability of AP-1000 during a core meltdown accident[J]. Annals of Nuclear Energy, 2017, 99: 455-463. doi: 10.1016/j.anucene.2016.09.052
    [8]
    张小英,姚婷婷,李志威,等. 堆芯熔融物对压力容器壁面烧蚀过程的数值模拟[J]. 核技术,2015, 38: 020606. doi: 10.11889/j.0253-3219.2015.hjs.38.020606
    [9]
    ZHAN D K, LIU F Y, ZHANG X Y, et al. Ablation and thermal stress analysis of RPV vessel under heating by core melt[J]. Nuclear Engineering and Design, 2018, 330: 550-558. doi: 10.1016/j.nucengdes.2018.02.008
    [10]
    SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209. doi: 10.1016/S0022-5096(99)00029-0
    [11]
    SILLING S A. Linearized theory of peridynamic states[J]. Journal of Elasticity, 2010, 99(1): 85-111. doi: 10.1007/s10659-009-9234-0
    [12]
    HUANG D, LU G D, QIAO P Z. An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis[J]. International Journal of Mechanical Sciences, 2015, 94-95: 111-122. doi: 10.1016/j.ijmecsci.2015.02.018
    [13]
    BOBARU F, DUANGPANYA M. The peridynamic formulation for transient heat conduction[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20): 4047-4059. doi: 10.1016/j.ijheatmasstransfer.2010.05.024
    [14]
    LI H, ZHANG H W, ZHENG Y G, et al. A peridynamic model for the nonlinear static analysis of truss and tensegrity structures[J]. Computational Mechanics, 2016, 57(5): 843-858. doi: 10.1007/s00466-016-1264-4
    [15]
    ZHANG H W, LI H, YE H F, et al. A coupling peridynamic approach for the consolidation and dynamic analysis of saturated porous media[J]. Computational Mechanics, 2019, 64(4): 1097-1113. doi: 10.1007/s00466-019-01695-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (44) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return