Citation: | Liu Yongchao, Tan Sichao, Li Tong, Cheng Jiahao, Wang Bo, Gao Puzhen, Tian Ruifeng. Research on Intelligent Control Method of Operating Temperature of Reactor Thermal System Based on Deep Reinforcement Learning[J]. Nuclear Power Engineering, 2024, 45(S2): 197-205. doi: 10.13832/j.jnpe.2024.S2.0197 |
[1] |
DONG Z, CHENG Z H, ZHU Y L, et al. Review on the recent progress in nuclear plant dynamical modeling and control[J]. Energies, 2023, 16(3): 1443. doi: 10.3390/en16031443
|
[2] |
孙奥迪,孙培伟,魏新宇. 小型铅铋冷却快堆堆芯功率控制研究[J]. 核动力工程,2022, 43(6): 155-161.
|
[3] |
DEGRAVE J, FELICI F, BUCHLI J, et al. Magnetic control of tokamak plasmas through deep reinforcement learning[J]. Nature, 2022, 602(7897): 414-419. doi: 10.1038/s41586-021-04301-9
|
[4] |
PARK J K, KIM T K, SEONG S H. Providing support to operators for monitoring safety functions using reinforcement learning[J]. Progress in Nuclear Energy, 2020, 118: 103123. doi: 10.1016/j.pnucene.2019.103123
|
[5] |
SAEED H A, PENG M J, WANG H, et al. Autonomous control model for emergency operation of small modular reactor[J]. Annals of Nuclear Energy, 2023, 190: 109874. doi: 10.1016/j.anucene.2023.109874
|
[6] |
刘永超,李桐,成以恒,等. 基于深度确定性策略梯度算法的自适应核反应堆功率控制器设计[J]. 原子能科学技术,2024, 58(5): 1076-1083.
|
[7] |
HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]//Proceedings of the 35th International Conference on Machine Learning. Stockholm: PMLR, 2018: 1861-1870.
|
[8] |
朱少民,夏虹,吕新知,等. 基于ARIMA和LSTM组合模型的核电厂主泵状态预测[J]. 核动力工程,2022, 43(2): 246-253. doi: 10.13832/j.jnpe.2022.02.0246.
|
[9] |
张思原,卢忝余,曾辉,等. 基于LSTM的核电传感器多特征融合多步状态预测[J]. 核动力工程,2021, 42(4): 208-213. doi: 10.13832/j.jnpe.2021.04.0208.
|
[10] |
冀南,杨俊康,赵鹏程,等. 耦合多变量LSTM与优化算法的铅铋反应堆事故参数预测方法研究[J]. 核动力工程,2023, 44(5): 64-70. doi: 10.13832/j.jnpe.2023.05.0064.
|