Advance Search
Volume 45 Issue S2
Jan.  2025
Turn off MathJax
Article Contents
Peng Dingping, Li Zhonghao, Cao Bo, Miao Xuewei, You Qingyue. Comparative Study of Neural Network-based Source Term Inversion Methods for Nuclear Accidents[J]. Nuclear Power Engineering, 2024, 45(S2): 214-222. doi: 10.13832/j.jnpe.2024.S2.0214
Citation: Peng Dingping, Li Zhonghao, Cao Bo, Miao Xuewei, You Qingyue. Comparative Study of Neural Network-based Source Term Inversion Methods for Nuclear Accidents[J]. Nuclear Power Engineering, 2024, 45(S2): 214-222. doi: 10.13832/j.jnpe.2024.S2.0214

Comparative Study of Neural Network-based Source Term Inversion Methods for Nuclear Accidents

doi: 10.13832/j.jnpe.2024.S2.0214
  • Received Date: 2024-06-14
  • Rev Recd Date: 2024-09-30
  • Publish Date: 2025-01-06
  • The nuclear accident source term is an important basis for the evaluation of the consequences of nuclear accidents. The accurate and fast acquisition of the source term is of great significance for the development of nuclear accident emergency response decision-making. This study utilizes three typical neural network algorithms, namely radial basis neural network, back propagation neural network and deep feed-forward neural network, to compare the inverse estimation of nuclear accident source terms. For the inversion of single nuclide and multi-nuclide source term, taking the release rate of radionuclides as the inversion target, the simulation experiment is conducted to obtain the monitoring data by using the radioactive atmospheric dispersion simulation code RADC developed by the group. The results of error analysis and inversion time comparison show that the nuclide release rate inversion model based on deep feedforward neural network exhibits excellent performance. For the release rate inversion of single nuclide, the relative error of the inversion is within 1.7%~3.0% and the average absolute percentage error is 2.2% under the ten-fold cross-validation. For the multi-nuclide case, the average absolute percentage error of the inversion of deep feedforward neural network is 8.05%. Its inversion estimation accuracy and stability are better than that of the BP neural network and radial basis neural network.

     

  • loading
  • [1]
    SAUNIER O, MATHIEU A, DIDIER D, et al. An inverse modeling method to assess the source term of the Fukushima Nuclear Power Plant accident using gamma dose rate observations[J]. Atmospheric Chemistry and Physics, 2013, 13(22): 11403-11421. doi: 10.5194/acp-13-11403-2013
    [2]
    CHAI T F, DRAXLER R, STEIN A. Source term estimation using air concentration measurements and a Lagrangian dispersion model—experiments with pseudo and real cesium-137 observations from the Fukushima nuclear accident[J]. Atmospheric Environment, 2015, 106: 241-251. doi: 10.1016/j.atmosenv.2015.01.070
    [3]
    DUMONT LE BRAZIDEC J, BOCQUET M, SAUNIER O, et al. Bayesian transdimensional inverse reconstruction of the Fukushima Daiichi caesium 137 release[J]. Geoscientific Model Development, 2023, 16(3): 1039-1052. doi: 10.5194/gmd-16-1039-2023
    [4]
    TICHÝ O, ŠMÍDL V, HOFMAN R, et al. Bayesian inverse modeling and source location of an unintended 131I release in Europe in the fall of 2011[J]. Atmospheric Chemistry and Physics, 2017, 17(20): 12677-12696. doi: 10.5194/acp-17-12677-2017
    [5]
    唐秀欢,李华,包利红. 核事故实时释放量集合卡尔曼滤波反演算法研究[J]. 原子能科学技术,2014, 48(S1): 415-420.
    [6]
    KOVALETS I, ANDRONOPOULOS S, HOFMAN R, et al. Advanced method for source term estimation and status of its integration in JRODOS[J]. Radioprotection, 2016, 51(HS2): S121-S123.
    [7]
    SUN S D, LI X P, LI H, et al. Site-specific (Multi-scenario) validation of ensemble Kalman filter-based source inversion through multi-direction wind tunnel experiments[J]. Journal of Environmental Radioactivity, 2019, 197: 90-100. doi: 10.1016/j.jenvrad.2018.12.005
    [8]
    DI RONCO A, GIACOBBO F, CAMMI A. A Kalman filter-based approach for online source-term estimation in accidental radioactive dispersion events[J]. Sustainability, 2020, 12(23): 10003. doi: 10.3390/su122310003
    [9]
    GENG X B, XIE Z H, ZHANG L J, et al. An inverse method to estimate emission rates based on nonlinear least-squares-based ensemble four-dimensional variational data assimilation with local air concentration measurements[J]. Journal of Environmental Radioactivity, 2018, 183: 17-26. doi: 10.1016/j.jenvrad.2017.12.004
    [10]
    刘蕴,刘新建,李红,等. 截断总体最小二乘变分核事故源项反演数值研究[J]. 核动力工程,2019, 40(1): 120-125.
    [11]
    宁莎莎,蒯琳萍. 混合遗传算法在核事故源项反演中的应用[J]. 原子能科学技术,2012, 46(S1): 469-472.
    [12]
    MA D L, ZHANG Z X. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere[J]. Journal of Hazardous Materials, 2016, 311: 237-245. doi: 10.1016/j.jhazmat.2016.03.022
    [13]
    沈泽亚,郎建垒,程水源,等. 典型耦合优化算法在源项反演中的对比研究[J]. 中国环境科学,2019, 39(8): 3207-3214. doi: 10.3969/j.issn.1000-6923.2019.08.010
    [14]
    LI X P, SUN S D, HU X F, et al. Source inversion of both long- and short-lived radionuclide releases from the Fukushima Daiichi nuclear accident using on-site gamma dose rates[J]. Journal of Hazardous Materials, 2019, 379: 120770. doi: 10.1016/j.jhazmat.2019.120770
    [15]
    JANG S, PARK J, LEE H H, et al. Comparative study on gradient-free optimization methods for inverse source-term estimation of radioactive dispersion from nuclear accidents[J]. Journal of Hazardous Materials, 2024, 461: 132519. doi: 10.1016/j.jhazmat.2023.132519
    [16]
    凌永生,侯闻宇,贾文宝,等. 基于BP神经网络的核事故源项反演方法研究[J]. 中国安全科学学报,2014, 24(8): 21-25.
    [17]
    侯闻宇,凌永生,赵丹,等. BP神经网络反演核事故源项中重要参数的研究[J]. 南京航空航天大学学报,2015, 47(5): 778-784.
    [18]
    侯闻宇,凌永生,赵丹,等. GA-BP算法应用于核事故源项反演的研究[J]. 安全与环境学报,2016, 16(6): 24-28.
    [19]
    赵丹,凌永生,侯闻宇,等. 基于BP神经网络的核事故多核素源项反演方法[J]. 南京航空航天大学学报,2016, 48(1): 130-135.
    [20]
    LING Y S, YUE Q, CHAI C J, et al. Nuclear accident source term estimation using kernel principal component analysis, particle swarm optimization, and backpropagation neural networks[J]. Annals of Nuclear Energy, 2020, 136: 107031. doi: 10.1016/j.anucene.2019.107031
    [21]
    KATATA G, OTA M, TERADA H, et al. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi nuclear power plant accident. Part I: Source term estimation and local-scale atmospheric dispersion in early phase of the accident[J]. Journal of Environmental Radioactivity, 2012, 109: 103-113. doi: 10.1016/j.jenvrad.2012.02.006
    [22]
    淳思琦,冯欢,张安妮,等. 基于软注意力GRU模型的堆芯瞬态热工水力参数预测方法研究[J]. 核技术,2024, 47(1): 124-132. doi: 10.11889/j.0253-3219.2024.hjs.47.010603
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views (24) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return