Citation: | Li Linfeng, Xu Anqi, Dong Xiaomeng, Zhang Zhen, Yang Ming, Wen Ting, Liu Yong. Study on Risk-informed Safety Evaluation and Optimization under Adaptive Sampling in Nuclear Power Plant[J]. Nuclear Power Engineering, 2024, 45(S2): 223-230. doi: 10.13832/j.jnpe.2024.S2.0223 |
[1] |
DE VASCONCELOS V, SOARES W A, DA COSTA A C L, et al. Deterministic and probabilistic safety analyses[M]//RAM M, DAVIM J P. Advances in System Reliability Engineering. London: Academic Press, 2019: 43-75.
|
[2] |
BEDFORD T, COOKE R. Probabilistic risk analysis: foundations and methods[M]. Cambridge: Cambridge University Press, 2001: 99.
|
[3] |
U. S. Department of Energy. Light water reactor sustainability research and development program plan fiscal year 2009-2013: INL/MIS-08-14918[R]. Idaho Falls: Idaho National Laboratory, 2009.
|
[4] |
HESS S M, DINH N, GAERTNER J P, et al. Risk-informed safety margin characterization[C]//Proceedings of the 17th International Conference on Nuclear Engineering. Brussels: ASME, 2009.
|
[5] |
SMITH C, RABITI C, SZILARD R. Risk-informed safety margins characterization (RISMC) pathway technical program plan: INL/EXT-17-43243-Rev000[R]. Idaho Falls: Idaho National Lab. , 2017.
|
[6] |
Szilard R H, Zhang H, Choi Y J. Risk-Informed Systems Analysis (RISA) Pathway Technical Program Plan[R]. Idaho National Lab.(INL), Idaho Falls, ID (United States), 2018.
|
[7] |
王照,李琼哲,郭建兵. 基于RISMC分析方法的全厂断电叠加汽动辅助给水失效事故研究[J]. 核动力工程,2023, 44(6): 186-192. doi: 10.13832/j.jnpe.2023.06.0186.
|
[8] |
ALDEMIR T. A survey of dynamic methodologies for probabilistic safety assessment of nuclear power plants[J]. Annals of Nuclear Energy, 2013, 52: 113-124. doi: 10.1016/j.anucene.2012.08.001
|
[9] |
HOFER E, KLOOS M, KRZYKACZ-HAUSMANN B, et al. Dynamic event trees for probabilistic safety analysis[R]. Berlin: GRS, 2004.
|
[10] |
HAKOBYAN A, ALDEMIR T, DENNING R, et al. Dynamic generation of accident progression event trees[J]. Nuclear Engineering and Design, 2008, 238(12): 3457-3467. doi: 10.1016/j.nucengdes.2008.08.005
|
[11] |
Risk-informed Methods and Applications in Nuclear and Energy Engineering: Modeling, Experimentation, and Validation[M]. Academic Press, 2023. 43-54.
|
[12] |
ABDEL-KHALIK H S, BANG Y, KENNEDY C, et al. Reduced order modeling for nonlinear multi-component models[J]. International Journal for Uncertainty Quantification, 2012, 2(4): 341-361. doi: 10.1615/Int.J.UncertaintyQuantification.2012003523
|
[13] |
DI MAIO F, BANDINI A, ZIO E, et al. An approach based on Support Vector Machines and a K-D Tree search algorithm for identification of the failure domain and safest operating conditions in nuclear systems[J]. Progress in Nuclear Energy, 2016, 88: 297-309. doi: 10.1016/j.pnucene.2016.01.017
|
[14] |
BAE J, PARK J W, LEE S J. Limit surface/states searching algorithm with a deep neural network and Monte Carlo dropout for nuclear power plant safety assessment[J]. Applied Soft Computing, 2022, 124: 109007. doi: 10.1016/j.asoc.2022.109007
|
[15] |
DIAW A, MCKERNS M, SAGERT I, et al. Efficient learning of accurate surrogates for simulations of complex systems[J]. Nature Machine Intelligence, 2024, 6(5): 568-577. doi: 10.1038/s42256-024-00839-1
|
[16] |
MANDELLI D, SMITH C. Adaptive sampling using support vector machines: INL/CON-12-26354[R]. Idaho Fall: Idaho National Laboratory, 2012.
|
[17] |
CHEN H Y, WANG H, WANG L C, et al. Evaluation of probabilistic safety margin of nuclear power plant based on optimized adaptive sampling method[J]. Annals of Nuclear Energy, 2024, 201: 110409. doi: 10.1016/j.anucene.2024.110409
|
[18] |
FUHG J N, FAU A, NACKENHORST U. State-of-the-art and comparative review of adaptive sampling methods for Kriging[J]. Archives of Computational Methods in Engineering, 2021, 28(4): 2689-2747. doi: 10.1007/s11831-020-09474-6
|