Advance Search
Volume 45 Issue S2
Jan.  2025
Turn off MathJax
Article Contents
Yan Zefan, Tian Yu, Liu Malin, Liu Rongzheng, Liu Bing, Shao Youlin, Tang Yaping. Molecular Dynamics Simulation of Nanomechanics Behavior of SiC Layer of TRISO Particle[J]. Nuclear Power Engineering, 2024, 45(S2): 245-253. doi: 10.13832/j.jnpe.2024.S2.0245
Citation: Yan Zefan, Tian Yu, Liu Malin, Liu Rongzheng, Liu Bing, Shao Youlin, Tang Yaping. Molecular Dynamics Simulation of Nanomechanics Behavior of SiC Layer of TRISO Particle[J]. Nuclear Power Engineering, 2024, 45(S2): 245-253. doi: 10.13832/j.jnpe.2024.S2.0245

Molecular Dynamics Simulation of Nanomechanics Behavior of SiC Layer of TRISO Particle

doi: 10.13832/j.jnpe.2024.S2.0245
  • Received Date: 2024-07-22
  • Rev Recd Date: 2024-10-10
  • Publish Date: 2025-01-06
  • The grain of the SiC layer of tristructural-isotropic (TRISO) particles will undergo phase transformation, fracture and abnormal growth after irradiation and high temperature test. The mechanical behavior of these SiC layers is very important for the safety study of TRISO particles. In this paper, molecular dynamics simulation is used to study the nanomechanical behavior and properties of SiC layer. Four typical SiC layer structures are constructed according to the experimental phenomena: 3C-SiC before service, 3C-SiC after irradiation test, 6H-SiC after high temperature test, and 6H/3C-SiC after high temperature & irradiation test. The nanomechanical behavior and mechanical properties of SiC layer are analyzed by load-depth curve, dislocation evolution, stress & strain, and atomic diffusion. The results show that the SiC layer after service has less interaction between dislocations during the nanoindentation loading process, which reduces the plastic deformation, resulting a decrease in Young's modulus. For the SiC layer after irradiation test and high temperature & irradiation test, the concentration degree of stress and strain directly below the indenter decreases, and the transverse distribution of stress, strain, and atomic diffusion increases, resulting in a decrease in hardness. For the SiC layer after high temperature test, the concentration degree of stress and strain directly below the indenter increases, and the vertical distribution of stress, strain, and atomic diffusion increases, resulting in an increase in hardness. The research results give a quantitative explanation for the mechanical behavior and properties of various types of SiC layers, which is helpful to understand the relationship among the microstructure, mechanical behavior and mechanical properties of SiC layers.

     

  • loading
  • [1]
    LIU R Z, LIU B, ZHANG K H, et al. High temperature oxidation behavior of SiC coating in TRISO coated particles[J]. Journal of Nuclear Materials, 2014, 453(1-3): 107-114. doi: 10.1016/j.jnucmat.2014.06.055
    [2]
    刘荣正,刘马林,马景陶. 先进核燃料与材料[M]. 北京: 清华大学出版社,2022: 170-172.
    [3]
    WU Z H, LIU W D, ZHANG L C, et al. Amorphization and dislocation evolution mechanisms of single crystalline 6H-SiC[J]. Acta Materialia, 2020, 182: 60-67. doi: 10.1016/j.actamat.2019.10.037
    [4]
    ZHU B, ZHAO D, ZHAO H W. A study of deformation behavior and phase transformation in 4H-SiC during nanoindentation process via molecular dynamics simulation[J]. Ceramics International, 2019, 45(4): 5150-5157. doi: 10.1016/j.ceramint.2018.10.261
    [5]
    TIAN Z G, XU X P, JIANG F, et al. Study on nanomechanical properties of 4H-SiC and 6H-SiC by molecular dynamics simulations[J]. Ceramics International, 2019, 45(17): 21998-22006. doi: 10.1016/j.ceramint.2019.07.214
    [6]
    SUN S, PENG X H, XIANG H G, et al. Molecular dynamics simulation in single crystal 3C-SiC under nanoindentation: formation of prismatic loops[J]. Ceramics International, 2017, 43(18): 16313-16318. doi: 10.1016/j.ceramint.2017.09.003
    [7]
    PAN C L, ZHANG L M, JIANG W L, et al. Grain size dependence of hardness in nanocrystalline silicon carbide[J]. Journal of the European Ceramic Society, 2020, 40(13): 4396-4402. doi: 10.1016/j.jeurceramsoc.2020.05.060
    [8]
    CHAVOSHI S Z, XU S Z. Twinning effects in the single/nanocrystalline cubic silicon carbide subjected to nanoindentation loading[J]. Materialia, 2018, 3: 304-325. doi: 10.1016/j.mtla.2018.09.003
    [9]
    THOMPSON A P, AKTULGA H M, BERGER R, et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171. doi: 10.1016/j.cpc.2021.108171
    [10]
    STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
    [11]
    WU Z H, LIU W D, ZHANG L C. Effect of structural anisotropy on the dislocation nucleation and evolution in 6H-SiC under nanoindentation[J]. Ceramics International, 2019, 45(11): 14229-14237. doi: 10.1016/j.ceramint.2019.04.131
    [12]
    VASHISHTA P, KALIA R K, NAKANO A, et al. Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide[J]. Journal of Applied Physics, 2007, 101(10): 103515. doi: 10.1063/1.2724570
    [13]
    ERHART P, ALBE K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide[J]. Physical Review B, 2005, 71(3): 035211. doi: 10.1103/PhysRevB.71.035211
    [14]
    TERSOFF J. New empirical approach for the structure and energy of covalent systems[J]. Physical Review B, 1988, 37(12): 6991-7000. doi: 10.1103/PhysRevB.37.6991
    [15]
    WU Z H, ZHANG L C. Mechanical properties and deformation mechanisms of surface-modified 6H-silicon carbide[J]. Journal of Materials Science & Technology, 2021, 90: 58-65.
    [16]
    XUE L H, FENG G, LIU S. Molecular dynamics study of temperature effect on deformation behavior of m-plane 4H-SiC film by nanoindentation[J]. Vacuum, 2022, 202: 111192. doi: 10.1016/j.vacuum.2022.111192
    [17]
    SHIH C J, MEYERS M A, NESTERENKO V F, et al. Damage evolution in dynamic deformation of silicon carbide[J]. Acta Materialia, 2000, 48(9): 2399-2420. doi: 10.1016/S1359-6454(99)00409-7
    [18]
    GOEL S, STUKOWSKI A, LUO X C, et al. Anisotropy of single-crystal 3C-SiC during nanometric cutting[J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(6): 065004. doi: 10.1088/0965-0393/21/6/065004
    [19]
    LIAO F, GIRSHICK S L, MOOK W M, et al. Superhard nanocrystalline silicon carbide films[J]. Applied Physics Letters, 2005, 86(17): 171913. doi: 10.1063/1.1920434
    [20]
    XUE L H, FENG G, WU G, et al. Study of deformation mechanism of structural anisotropy in 4H-SiC film by nanoindentation[J]. Materials Science in Semiconductor Processing, 2022, 146: 106671. doi: 10.1016/j.mssp.2022.106671
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (29) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return