Citation: | Jiang Duoyu, Xu Peng, Jiang Xinbiao, Hu Tianliang, Wang Lipeng, Cao Lu, Li Da. Application Research on Whole-Core Three-Dimensional Space-Time Kinetics Neutron Transport Code SAAFCGSN[J]. Nuclear Power Engineering, 2025, 46(1): 13-23. doi: 10.13832/j.jnpe.2025.01.0013 |
[1] |
吴宏春,杨红义,曹良志,等. 金属冷却快堆关键分析软件的现状与展望[J]. 现代应用物理,2021, 12(1): 010201.
|
[2] |
卢琳龙,李兵,高辉. 含氢反射层对金属活性区快中子脉冲反应堆特性参数的影响[J]. 现代应用物理,2022, 13(2): 020205.
|
[3] |
CARLSON B G. Solution of the transport equation by Sn approximations: LA-1599[R]. Los Alamos: Los Alamos Scientific Laboratory, 1955.
|
[4] |
STACEY W M. Nuclear reactor physics[M]. 2nd ed. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2007: 338-353.
|
[5] |
JIANG D Y, XU P, HU T L, et al. Coupled Monte Carlo and thermal-hydraulics modeling for the three-dimensional steady-state analysis of the Xi’an Pulsed Reactor[J]. Energies, 2023, 16(16): 6046. doi: 10.3390/en16166046
|
[6] |
MOREL J E, MCGHEE J M. A self-adjoint angular flux equation[J]. Nuclear Science and Engineering, 1999, 132(3): 312-325. doi: 10.13182/NSE132-312
|
[7] |
POMRANING G C, CLARK JR M. The variational method applied to the monoenergetic Boltzmann equation. Part II[J]. Nuclear Science and Engineering, 1963, 16(2): 155-164. doi: 10.13182/NSE63-A26495
|
[8] |
ACKROYD R T. Least-squares derivation of extremum and weighted-residual methods for equations of reactor physics—I. The first-order Boltzmann equation and a first-order initial-value equation[J]. Annals of Nuclear Energy, 1983, 10(2): 65-99. doi: 10.1016/0306-4549(83)90011-7
|
[9] |
LISCUM-POWELL J L. Finite element numerical solution of a self-adjoint transport equation for coupled electron-photon problems[D]. New Mexico: The University of New Mexico, 2000.
|
[10] |
曹良志,吴宏春,周永强. 非结构几何下二阶自共轭中子输运方程中的简化球谐函数方法研究[J]. 核动力工程,2006, 27(3): 6-10. doi: 10.3969/j.issn.0258-0926.2006.03.002
|
[11] |
叶青,吴宏春. R-Z几何中子输运方程的球谐函数方法[J]. 核动力工程,2008, 29(4): 19-23.
|
[12] |
SCHUNERT S, WANG Y Q, MARTINEAU R, et al. A new mathematical adjoint for the modified SAAF-S N equations[J]. Annals of Nuclear Energy, 2015, 75: 340-352. doi: 10.1016/j.anucene.2014.08.028
|
[13] |
WANG Y Q, DEHART M D, GASTON D R, et al. Convergence study of Rattlesnake solutions for the two-dimensional C5G7 MOX benchmark[C]//Proceedings of Joint International Conference on Mathematics and Computation. Idaho Falls: Idaho National Lab. , 2015.
|
[14] |
WANG Y Q, SCHUNERT S, LABOURÉ V. Rattlesnake theory manual: INL/EXT-17-42103[R]. Idaho Falls: Idaho National Laboratory, 2018.
|
[15] |
LATIMER C, KÓPHÁZI J, EATON M D, et al. A geometry conforming isogeometric method for the self-adjoint angular flux (SAAF) form of the neutron transport equation with a discrete ordinate (SN) angular discretisation[J]. Annals of Nuclear Energy, 2020, 136: 107049. doi: 10.1016/j.anucene.2019.107049
|
[16] |
GIUDICELLI G, LINDSAY A, HARBOUR L, et al. 3.0 - MOOSE: enabling massively parallel multiphysics simulations[J]. SoftwareX, 2024, 26: 101690. doi: 10.1016/j.softx.2024.101690
|
[17] |
KNOLL D A. KEYES D E. Jacobian-free Newton-Krylov methods: a survey of approaches and applications[J]. Journal of Computational Physics, 2004, 193(2): 357-397. doi: 10.1016/j.jcp.2003.08.010
|
[18] |
JOO H S. Resolution of the control rod cusping problem for nodal methods[D]. Cambridge: Massachusetts Institute of Technology, 1984.
|
[19] |
HOU J, IVANOV K N, BOYARINOV V F, et al. OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization[J]. Nuclear Engineering and Design, 2017, 317: 177-189. doi: 10.1016/j.nucengdes.2017.02.008
|
[20] |
JIANG D Y, XU P, HU T L, et al. Transient multi-physics coupling analysis of the Xi'an Pulsed Reactor under pulsed condition[J]. Annals of Nuclear Energy, 2024, 200: 110379. doi: 10.1016/j.anucene.2024.110379
|
[21] |
TAO S J, XU Y L. Neutron transport analysis of C5G7-TD benchmark with PANDAS-MOC[J]. Annals of Nuclear Energy, 2022, 169: 108966. doi: 10.1016/j.anucene.2022.108966
|
[22] |
王博,刘宙宇,陈军,等. 基于NECP-X程序的C5G7-TD系列基准题的计算与分析[J]. 核动力工程,2020, 41(3): 24-30.
|
[23] |
张旻婉,刘宙宇,温兴坚,等. 用NECP-X程序计算与分析VERA 9#基准题[J]. 现代应用物理,2021, 12(1): 010212.
|
[24] |
DEHART M D, MAUSOLFF Z, WEEMS Z, et al. Preliminary results for the OECD/NEA time dependent benchmark using Rattlesnake, Rattlesnake-IQS and TDKENO: INL/EXT-16-39723[R]. Idaho Falls: Idaho National Laboratory, 2016.
|
[25] |
GUO X Y, SHANG X T, SONG J, et al. Kinetic methods in Monte Carlo code RMC and its implementation to C5G7-TD benchmark[J]. Annals of Nuclear Energy, 2021, 151: 107864. doi: 10.1016/j.anucene.2020.107864
|
[26] |
SHEN Q C, WANG Y R, JABAAY D, et al. Transient analysis of C5G7-TD benchmark with MPACT[J]. Annals of Nuclear Energy, 2019, 125: 107-120. doi: 10.1016/j.anucene.2018.10.049
|