Advance Search
Volume 46 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
Mei Zhongkai, He Linfeng, Wen Qinglong, Qiu Zhifang, Chen Dongfeng. Progress and Application of Neutron Radiography Characterization Technology for Multiphase Flow Pattern of New Working Medium Reactor[J]. Nuclear Power Engineering, 2025, 46(1): 47-62. doi: 10.13832/j.jnpe.2025.01.0047
Citation: Mei Zhongkai, He Linfeng, Wen Qinglong, Qiu Zhifang, Chen Dongfeng. Progress and Application of Neutron Radiography Characterization Technology for Multiphase Flow Pattern of New Working Medium Reactor[J]. Nuclear Power Engineering, 2025, 46(1): 47-62. doi: 10.13832/j.jnpe.2025.01.0047

Progress and Application of Neutron Radiography Characterization Technology for Multiphase Flow Pattern of New Working Medium Reactor

doi: 10.13832/j.jnpe.2025.01.0047
  • Received Date: 2024-07-14
  • Rev Recd Date: 2024-09-12
  • Publish Date: 2025-02-15
  • Neutron radiography shows important application potential in the visualization and measurement of multi-phase flow morphologies in new working medium reactors. This article elaborates on the basic principles of neutron radiography measurement methods, provides a comprehensive review of the research progress of neutron radiography technology in traditional light water reactors, lead-bismuth cooled fast reactors, heat pipe cooled reactors, supercritical water reactors, and sodium-cooled fast reactors. It also outlines the future development directions of neutron radiography technology applied to new working medium reactors and provides the basic methodologies for obtaining high-fidelity neutron images and measuring flow patterns.

     

  • loading
  • [1]
    KALLMANN H, KUHN E. Photographic detection of slowly moving neutrons: US, 2186757A[P]. 1940-01-09.
    [2]
    THEWLIS J. Neutron radiography[J]. British Journal of Applied Physics, 1956, 7(10): 345-350. doi: 10.1088/0508-3443/7/10/301
    [3]
    LOHVITHEE M, RASSAME S, HIBIKI T. Applications of neutron computed tomography to thermal-hydraulics research[J]. Progress in Nuclear Energy, 2022, 149: 104262. doi: 10.1016/j.pnucene.2022.104262
    [4]
    TAMBOURATZIS T, PÀZSIT I. A general regression artificial neural network for two-phase flow regime identification[J]. Annals of Nuclear Energy, 2010, 37(5): 672-680. doi: 10.1016/j.anucene.2010.02.004
    [5]
    杨安波,弋然. 中子照相技术及其发展和应用[J]. 科学技术创新,2023(12): 22-25. doi: 10.3969/j.issn.1673-1328.2023.12.007
    [6]
    李环宇. 小型热中子照相系统关键部件的仿真与设计[D]. 长春: 东北师范大学,2022.
    [7]
    张俊哲. 中子照相技术及其在核工程中的应用[J]. 核动力工程,1991,12(2): 92-96.
    [8]
    陈东风,刘蕴韬,韩松柏. 中国先进研究堆中子散射谱仪建设现状和展望[J]. 中国材料进展,2009, 28(12): 1-5.
    [9]
    GARRETT D A, BERGER H. The technological development of neutron radiography[J]. Atomic Energy Review, 1977, 15(2): 125-142.
    [10]
    乔浩. 高分辨冷中子成像探测器的研究进展[D]. 兰州: 兰州大学,2017.
    [11]
    赵世平. 基于蒙特卡洛方法模拟中子照相[D]. 长春: 东北师范大学,2008.
    [12]
    MISHIMA K, FUJINE S, YONEDA K, et al. A study of air-water flow in a narrow rectangular duct using an image processing technique[M]//JONES O C, MICHIYOSHI I. Dynamics of Two-Phase Flows. Boca Raton: Begell House, 2023: 141-160.
    [13]
    TAKENAKA N, FUJII T, AKAGAWA K, et al. Application of neutron radiography to visualization of multiphase flows[J]. Flow Measurement and Instrumentation, 1990, 1(3): 149-156. doi: 10.1016/0955-5986(90)90004-Q
    [14]
    HARVEL G D, HORI K, KAWANISHI K, et al. Real-time cross-sectional averaged void fraction measurements in vertical annulus gas-liquid two-phase flow by neutron radiography and X-ray tomography techniques[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 371(3): 544-552.
    [15]
    TAKENAKA N, ASANO H, FUJII T, et al. Three-dimensional visualization of void fraction distribution in steady two-phase flow by thermal neutron radiography[J]. Nuclear Engineering and Design, 1998, 184(2-3): 203-212. doi: 10.1016/S0029-5493(98)00197-6
    [16]
    CHA J E, LIM I C, SIM C M, et al. Observation of the two-phase flow patterns for a finned assembly using neutron radiography[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 542(1-3): 175-180.
    [17]
    SARKAR P S, KASHYAP Y, SINHA A, et al. Applications for real-time neutron radiography for convection driven flow pattern transition studies[J]. IEEE Transactions on Nuclear Science, 2005, 52(1): 290-294. doi: 10.1109/TNS.2005.843653
    [18]
    LIM I C, SIM C M, CHA J E, et al. Measurement of the void fraction in a channel simulating the HANARO fuel assembly using neutron radiography[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 542(1-3): 181-186.
    [19]
    TAMBOURATZIS T, PÁZSIT I. Fuzzy inference systems for efficient non-invasive on-line two-phase flow regime identification[C]//Proceedings of the 9th International Conference on Adaptive and Natural Computing Algorithms. Kuopio: Springer, 2009: 423-429.
    [20]
    ZBORAY R, KICKHOFEL J, DAMSOHN M, et al. Cold-neutron tomography of annular flow and functional spacer performance in a model of a boiling water reactor fuel rod bundle[J]. Nuclear Engineering and Design, 2011, 241(8): 3201-3215.
    [21]
    SAXENA A, ZBORAY R, PRASSER H M. Simulations and measurements of adiabatic annular flows in triangular, tight lattice nuclear fuel bundle model[J]. Nuclear Engineering and Design, 2016, 299: 163-173. doi: 10.1016/j.nucengdes.2015.07.063
    [22]
    ZBORAY R, BOLESCH C, PRASSER H M. Development of neutron and X-ray imaging techniques for nuclear fuel bundle optimization[J]. Nuclear Engineering and Design, 2018, 336: 24-33. doi: 10.1016/j.nucengdes.2017.04.035
    [23]
    ZBORAY R, TRTIK P. 800 fps neutron radiography of air-water two-phase flow[J]. MethodsX, 2018, 5: 96-102. doi: 10.1016/j.mex.2018.01.008
    [24]
    ZBORAY R, TRTIK P. In-depth analysis of high-speed, cold neutron imaging of air-water two-phase flows[J]. Flow Measurement and Instrumentation, 2019, 66: 182-189.
    [25]
    YAN M F, HU H S, HU G, et al. Development of a novel reconstruction method for two-phase flow CT with improved simulated annealing algorithm[J]. Nuclear Engineering and Technology, 2021, 53(4): 1304-1310.
    [26]
    LIU T S, ZBORAY R, TRTIK P, et al. Optical flow method for neutron radiography flow diagnostics[J]. Physics of Fluids, 2021, 33(10): 101702. doi: 10.1063/5.0063836
    [27]
    AHMED Z, ROSS M, CEBULA A, et al. Neutron imaging based vapor fraction measurements in an inductively heated boiling packed bed[J]. International Journal of Heat and Mass Transfer, 2023, 216: 124527. doi: 10.1016/j.ijheatmasstransfer.2023.124527
    [28]
    MISHIMA K, HIBIKI T. Development of high-frame-rate neutron radiography and quantitative measurement method for multiphase flow research[J]. Nuclear Engineering and Design, 1998, 184(2-3): 183-201. doi: 10.1016/S0029-5493(98)00196-4
    [29]
    HIBIKI T, MISHIMA K, YONEDA K, et al. Visualization of fluid phenomena using a high frame-rate neutron radiography with a steady thermal neutron beam[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 351(2-3): 423-436.
    [30]
    TAKENAKA N, ASANO H, FUJII T, et al. Liquid metal flow measurement by neutron radiography[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 377(1): 156-160.
    [31]
    UCHIMURA K, HARVEL G D, MATSUMOTO T, et al. An image processing approach for two-phase interfaces visualized by a real time neutron radiography technique[J]. Flow Measurement and Instrumentation, 1998, 9(4): 203-210.
    [32]
    MISHIMA K, HIBIKI T, SAITO Y, et al. Visualization study of molten metal–water interaction by using neutron radiography[J]. Nuclear Engineering and Design, 1999, 189(1-3): 391-403. doi: 10.1016/S0029-5493(98)00263-5
    [33]
    MISHIMA K, HIBIKI T, SAITO Y, et al. Visualization and measurement of gas–liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 424(1): 229-234.
    [34]
    HIBIKI T, SAITO Y, MISHIMA K, et al. Study on flow characteristics in gas-molten metal mixture pool[J]. Nuclear Engineering and Design, 2000, 196(2): 233-245. doi: 10.1016/S0029-5493(99)00293-9
    [35]
    SAITO Y, MISHIMA K, TOBITA Y, et al. Velocity field measurement in gas–liquid metal two-phase flow with use of PIV and neutron radiography techniques[J]. Applied Radiation and Isotopes, 2004, 61(4): 683-691.
    [36]
    SAITO Y, MISHIMA K, TOBITA Y, et al. Application of high frame-rate neutron radiography to liquid-metal two-phase flow research[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 542(1-3): 168-174.
    [37]
    SAITO Y, SHEN X, MISHIMA K, et al. Shape measurement of bubble in a liquid metal[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 605(1-2): 192-196.
    [38]
    KURETA M. Development of a neutron radiography three-dimensional computed tomography system for void fraction measurement of boiling flow in tight lattice rod bundles[J]. Journal of Power and Energy Systems, 2007, 1(3): 211-224. doi: 10.1299/jpes.1.211
    [39]
    SHEN X Z, YAMAMOTO T, HAN X, et al. Interfacial area concentration in gas-liquid metal two-phase flow[J]. Experimental and Computational Multiphase Flow, 2023, 5(1): 84-98. doi: 10.1007/s42757-021-0110-x
    [40]
    SIBAMOTO Y, NAKAMURA H, ANODA Y. Neutron radiography flow visualization of liquid metal injected into an empty vessel and a vessel containing saturated water[J]. Nuclear Technology, 2001, 133(1): 119-132.
    [41]
    李文军,肖星宇,周圣辉,等. 高温热管的研究进展及应用[J]. 现代化工,2020, 40(6): 15-18,23.
    [42]
    刘豪杰,秦凯文,魏强林,等. 不同热管工质对热管冷却反应堆堆芯物理参数的影响与分析[J]. 科学技术与工程,2023, 23(8): 3289-3294. doi: 10.12404/j.issn.1671-1815.2023.23.08.03289
    [43]
    李衍智,都家宇,吴莘馨,等. 先进核能技术中的热管应用[J]. 清华大学学报: 自然科学版,2023, 63(8): 1173-1183.
    [44]
    KIHM K D, HUSSEY D, PRATT D M, et al. Neutron imaging feasibility of liquid metal coolant behaviors inside a high-temperature alloy heat pipe[C]//Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference. Honolulu: ASME, 2011: T10185.
    [45]
    KIHM K, KIRCHOFF E, GOLDEN M, et al. Neutron imaging of alkali metal heat pipes[J]. Physics Procedia, 2013, 43: 323-330. doi: 10.1016/j.phpro.2013.03.038
    [46]
    KIRCHOFF E H. Neutron imaging of lithium inside a high-temperature heat pipe[D]. Knoxville: The University of Tennessee, 2013.
    [47]
    HIGHT B H. Neutron imaging of lithium (Li) coolants inside high temperature Niobium (Nb) heat pipes[D]. Knoxville: The University of Tennessee, 2014.
    [48]
    BALASKÓ M, HORVÁTH L, HORVÁTH Á, et al. Study of the behavior of supercritical water by dynamic neutron radiography[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 605(1-2): 138-141.
    [49]
    BALASKÓ M, HORVÁTH L, HORVÁTH Á, et al. Study on the properties of supercritical water flowing in a closed loop using dynamic neutron radiography[J]. Physics Procedia, 2013, 43: 254-263. doi: 10.1016/j.phpro.2013.03.029
    [50]
    TAKENAKA N, SUGIMOTO K, TAKAMI S, et al. Application of neutron radiography to flow visualization in supercritical water[J]. Physics Procedia, 2013, 43: 264-268.
    [51]
    KISS A, BALASKÓ M, HORVÁTH L, et al. Experimental investigation of the thermal hydraulics of supercritical water under natural circulation in a closed loop[J]. Annals of Nuclear Energy, 2017, 100: 178-203. doi: 10.1016/j.anucene.2016.09.020
    [52]
    ITO D, SAITO Y. Visualization of bubble behavior in a packed bed of spheres using neutron radiography[J]. Physics Procedia, 2015, 69: 593-598. doi: 10.1016/j.phpro.2015.07.084
    [53]
    MISHIMA K, HIBIKI T. Quantitative limits of thermal and fluid phenomena measurements using the neutron attenuation characteristics of materials[J]. Experimental Thermal and Fluid Science, 1996, 12(4): 461-472. doi: 10.1016/0894-1777(95)00181-6
    [54]
    ANDERSON I S, MCGREEVY R L, BILHEUX H Z. Neutron imaging and applications[M]. New York: Springer, 2009: 987.
    [55]
    贺林峰. 快速中子照相技术及其在两相流研究中的应用[D]. 北京: 中国原子能科学研究院,2014.
    [56]
    叶晗. 基于Perona-Malik的中子图像去噪研究[D]. 长春: 东北师范大学,2020.
    [57]
    赵辰一. 低对比度核成像增强方法研究[D]. 长春: 东北师范大学,2018.
    [58]
    BUADES A, COLL B, MOREL J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490-530.
    [59]
    DABOV K, FOI A, KATKOVNIK V, et al. Image denoising with block-matching and 3D filtering[C]//Proceedings of SPIE 6064, Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning. San Jose: SPIE, 2006: 606414.
    [60]
    ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745.
    [61]
    吴晓阳. 噪声强度估计及其在中子图像去噪中的应用研究[D]. 长春: 东北师范大学,2019.
    [62]
    CIMBALA J M, SATHIANATHAN D. Streakline flow visualization with neutron radiography[J]. Experiments in Fluids, 1988, 6(8): 547-552. doi: 10.1007/BF00196601
    [63]
    OGINO F. Application of neutron radiography to study of liquid-solid two phase flow[J]. Proceedings of WCNR-4, 1994: 339-346.
    [64]
    TAKENAKA N, FUJII T, ONO A, et al. Visualization of streak lines in liquid metal by neutron radiography[J]. Nondestructive Testing and Evaluation, 1994, 11(2-3): 107-113. doi: 10.1080/10589759408952823
    [65]
    MA X F, TAKEDA T. Asymmetric Abel inversion by neural network for reconstruction of plasma density distribution[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 492(1-2): 178-189.
    [66]
    DUPONT J, MIGNOT G, ZBORAY R, et al. Infrared film thickness measurement: comparison with cold neutron imaging[J]. Journal of Nuclear Science and Technology, 2016, 53(5): 673-681.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (31) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return