Citation: | Mei Zhongkai, He Linfeng, Wen Qinglong, Qiu Zhifang, Chen Dongfeng. Progress and Application of Neutron Radiography Characterization Technology for Multiphase Flow Pattern of New Working Medium Reactor[J]. Nuclear Power Engineering, 2025, 46(1): 47-62. doi: 10.13832/j.jnpe.2025.01.0047 |
[1] |
KALLMANN H, KUHN E. Photographic detection of slowly moving neutrons: US, 2186757A[P]. 1940-01-09.
|
[2] |
THEWLIS J. Neutron radiography[J]. British Journal of Applied Physics, 1956, 7(10): 345-350. doi: 10.1088/0508-3443/7/10/301
|
[3] |
LOHVITHEE M, RASSAME S, HIBIKI T. Applications of neutron computed tomography to thermal-hydraulics research[J]. Progress in Nuclear Energy, 2022, 149: 104262. doi: 10.1016/j.pnucene.2022.104262
|
[4] |
TAMBOURATZIS T, PÀZSIT I. A general regression artificial neural network for two-phase flow regime identification[J]. Annals of Nuclear Energy, 2010, 37(5): 672-680. doi: 10.1016/j.anucene.2010.02.004
|
[5] |
杨安波,弋然. 中子照相技术及其发展和应用[J]. 科学技术创新,2023(12): 22-25. doi: 10.3969/j.issn.1673-1328.2023.12.007
|
[6] |
李环宇. 小型热中子照相系统关键部件的仿真与设计[D]. 长春: 东北师范大学,2022.
|
[7] |
张俊哲. 中子照相技术及其在核工程中的应用[J]. 核动力工程,1991,12(2): 92-96.
|
[8] |
陈东风,刘蕴韬,韩松柏. 中国先进研究堆中子散射谱仪建设现状和展望[J]. 中国材料进展,2009, 28(12): 1-5.
|
[9] |
GARRETT D A, BERGER H. The technological development of neutron radiography[J]. Atomic Energy Review, 1977, 15(2): 125-142.
|
[10] |
乔浩. 高分辨冷中子成像探测器的研究进展[D]. 兰州: 兰州大学,2017.
|
[11] |
赵世平. 基于蒙特卡洛方法模拟中子照相[D]. 长春: 东北师范大学,2008.
|
[12] |
MISHIMA K, FUJINE S, YONEDA K, et al. A study of air-water flow in a narrow rectangular duct using an image processing technique[M]//JONES O C, MICHIYOSHI I. Dynamics of Two-Phase Flows. Boca Raton: Begell House, 2023: 141-160.
|
[13] |
TAKENAKA N, FUJII T, AKAGAWA K, et al. Application of neutron radiography to visualization of multiphase flows[J]. Flow Measurement and Instrumentation, 1990, 1(3): 149-156. doi: 10.1016/0955-5986(90)90004-Q
|
[14] |
HARVEL G D, HORI K, KAWANISHI K, et al. Real-time cross-sectional averaged void fraction measurements in vertical annulus gas-liquid two-phase flow by neutron radiography and X-ray tomography techniques[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 371(3): 544-552.
|
[15] |
TAKENAKA N, ASANO H, FUJII T, et al. Three-dimensional visualization of void fraction distribution in steady two-phase flow by thermal neutron radiography[J]. Nuclear Engineering and Design, 1998, 184(2-3): 203-212. doi: 10.1016/S0029-5493(98)00197-6
|
[16] |
CHA J E, LIM I C, SIM C M, et al. Observation of the two-phase flow patterns for a finned assembly using neutron radiography[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 542(1-3): 175-180.
|
[17] |
SARKAR P S, KASHYAP Y, SINHA A, et al. Applications for real-time neutron radiography for convection driven flow pattern transition studies[J]. IEEE Transactions on Nuclear Science, 2005, 52(1): 290-294. doi: 10.1109/TNS.2005.843653
|
[18] |
LIM I C, SIM C M, CHA J E, et al. Measurement of the void fraction in a channel simulating the HANARO fuel assembly using neutron radiography[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 542(1-3): 181-186.
|
[19] |
TAMBOURATZIS T, PÁZSIT I. Fuzzy inference systems for efficient non-invasive on-line two-phase flow regime identification[C]//Proceedings of the 9th International Conference on Adaptive and Natural Computing Algorithms. Kuopio: Springer, 2009: 423-429.
|
[20] |
ZBORAY R, KICKHOFEL J, DAMSOHN M, et al. Cold-neutron tomography of annular flow and functional spacer performance in a model of a boiling water reactor fuel rod bundle[J]. Nuclear Engineering and Design, 2011, 241(8): 3201-3215.
|
[21] |
SAXENA A, ZBORAY R, PRASSER H M. Simulations and measurements of adiabatic annular flows in triangular, tight lattice nuclear fuel bundle model[J]. Nuclear Engineering and Design, 2016, 299: 163-173. doi: 10.1016/j.nucengdes.2015.07.063
|
[22] |
ZBORAY R, BOLESCH C, PRASSER H M. Development of neutron and X-ray imaging techniques for nuclear fuel bundle optimization[J]. Nuclear Engineering and Design, 2018, 336: 24-33. doi: 10.1016/j.nucengdes.2017.04.035
|
[23] |
ZBORAY R, TRTIK P. 800 fps neutron radiography of air-water two-phase flow[J]. MethodsX, 2018, 5: 96-102. doi: 10.1016/j.mex.2018.01.008
|
[24] |
ZBORAY R, TRTIK P. In-depth analysis of high-speed, cold neutron imaging of air-water two-phase flows[J]. Flow Measurement and Instrumentation, 2019, 66: 182-189.
|
[25] |
YAN M F, HU H S, HU G, et al. Development of a novel reconstruction method for two-phase flow CT with improved simulated annealing algorithm[J]. Nuclear Engineering and Technology, 2021, 53(4): 1304-1310.
|
[26] |
LIU T S, ZBORAY R, TRTIK P, et al. Optical flow method for neutron radiography flow diagnostics[J]. Physics of Fluids, 2021, 33(10): 101702. doi: 10.1063/5.0063836
|
[27] |
AHMED Z, ROSS M, CEBULA A, et al. Neutron imaging based vapor fraction measurements in an inductively heated boiling packed bed[J]. International Journal of Heat and Mass Transfer, 2023, 216: 124527. doi: 10.1016/j.ijheatmasstransfer.2023.124527
|
[28] |
MISHIMA K, HIBIKI T. Development of high-frame-rate neutron radiography and quantitative measurement method for multiphase flow research[J]. Nuclear Engineering and Design, 1998, 184(2-3): 183-201. doi: 10.1016/S0029-5493(98)00196-4
|
[29] |
HIBIKI T, MISHIMA K, YONEDA K, et al. Visualization of fluid phenomena using a high frame-rate neutron radiography with a steady thermal neutron beam[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 351(2-3): 423-436.
|
[30] |
TAKENAKA N, ASANO H, FUJII T, et al. Liquid metal flow measurement by neutron radiography[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 377(1): 156-160.
|
[31] |
UCHIMURA K, HARVEL G D, MATSUMOTO T, et al. An image processing approach for two-phase interfaces visualized by a real time neutron radiography technique[J]. Flow Measurement and Instrumentation, 1998, 9(4): 203-210.
|
[32] |
MISHIMA K, HIBIKI T, SAITO Y, et al. Visualization study of molten metal–water interaction by using neutron radiography[J]. Nuclear Engineering and Design, 1999, 189(1-3): 391-403. doi: 10.1016/S0029-5493(98)00263-5
|
[33] |
MISHIMA K, HIBIKI T, SAITO Y, et al. Visualization and measurement of gas–liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 424(1): 229-234.
|
[34] |
HIBIKI T, SAITO Y, MISHIMA K, et al. Study on flow characteristics in gas-molten metal mixture pool[J]. Nuclear Engineering and Design, 2000, 196(2): 233-245. doi: 10.1016/S0029-5493(99)00293-9
|
[35] |
SAITO Y, MISHIMA K, TOBITA Y, et al. Velocity field measurement in gas–liquid metal two-phase flow with use of PIV and neutron radiography techniques[J]. Applied Radiation and Isotopes, 2004, 61(4): 683-691.
|
[36] |
SAITO Y, MISHIMA K, TOBITA Y, et al. Application of high frame-rate neutron radiography to liquid-metal two-phase flow research[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 542(1-3): 168-174.
|
[37] |
SAITO Y, SHEN X, MISHIMA K, et al. Shape measurement of bubble in a liquid metal[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 605(1-2): 192-196.
|
[38] |
KURETA M. Development of a neutron radiography three-dimensional computed tomography system for void fraction measurement of boiling flow in tight lattice rod bundles[J]. Journal of Power and Energy Systems, 2007, 1(3): 211-224. doi: 10.1299/jpes.1.211
|
[39] |
SHEN X Z, YAMAMOTO T, HAN X, et al. Interfacial area concentration in gas-liquid metal two-phase flow[J]. Experimental and Computational Multiphase Flow, 2023, 5(1): 84-98. doi: 10.1007/s42757-021-0110-x
|
[40] |
SIBAMOTO Y, NAKAMURA H, ANODA Y. Neutron radiography flow visualization of liquid metal injected into an empty vessel and a vessel containing saturated water[J]. Nuclear Technology, 2001, 133(1): 119-132.
|
[41] |
李文军,肖星宇,周圣辉,等. 高温热管的研究进展及应用[J]. 现代化工,2020, 40(6): 15-18,23.
|
[42] |
刘豪杰,秦凯文,魏强林,等. 不同热管工质对热管冷却反应堆堆芯物理参数的影响与分析[J]. 科学技术与工程,2023, 23(8): 3289-3294. doi: 10.12404/j.issn.1671-1815.2023.23.08.03289
|
[43] |
李衍智,都家宇,吴莘馨,等. 先进核能技术中的热管应用[J]. 清华大学学报: 自然科学版,2023, 63(8): 1173-1183.
|
[44] |
KIHM K D, HUSSEY D, PRATT D M, et al. Neutron imaging feasibility of liquid metal coolant behaviors inside a high-temperature alloy heat pipe[C]//Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference. Honolulu: ASME, 2011: T10185.
|
[45] |
KIHM K, KIRCHOFF E, GOLDEN M, et al. Neutron imaging of alkali metal heat pipes[J]. Physics Procedia, 2013, 43: 323-330. doi: 10.1016/j.phpro.2013.03.038
|
[46] |
KIRCHOFF E H. Neutron imaging of lithium inside a high-temperature heat pipe[D]. Knoxville: The University of Tennessee, 2013.
|
[47] |
HIGHT B H. Neutron imaging of lithium (Li) coolants inside high temperature Niobium (Nb) heat pipes[D]. Knoxville: The University of Tennessee, 2014.
|
[48] |
BALASKÓ M, HORVÁTH L, HORVÁTH Á, et al. Study of the behavior of supercritical water by dynamic neutron radiography[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 605(1-2): 138-141.
|
[49] |
BALASKÓ M, HORVÁTH L, HORVÁTH Á, et al. Study on the properties of supercritical water flowing in a closed loop using dynamic neutron radiography[J]. Physics Procedia, 2013, 43: 254-263. doi: 10.1016/j.phpro.2013.03.029
|
[50] |
TAKENAKA N, SUGIMOTO K, TAKAMI S, et al. Application of neutron radiography to flow visualization in supercritical water[J]. Physics Procedia, 2013, 43: 264-268.
|
[51] |
KISS A, BALASKÓ M, HORVÁTH L, et al. Experimental investigation of the thermal hydraulics of supercritical water under natural circulation in a closed loop[J]. Annals of Nuclear Energy, 2017, 100: 178-203. doi: 10.1016/j.anucene.2016.09.020
|
[52] |
ITO D, SAITO Y. Visualization of bubble behavior in a packed bed of spheres using neutron radiography[J]. Physics Procedia, 2015, 69: 593-598. doi: 10.1016/j.phpro.2015.07.084
|
[53] |
MISHIMA K, HIBIKI T. Quantitative limits of thermal and fluid phenomena measurements using the neutron attenuation characteristics of materials[J]. Experimental Thermal and Fluid Science, 1996, 12(4): 461-472. doi: 10.1016/0894-1777(95)00181-6
|
[54] |
ANDERSON I S, MCGREEVY R L, BILHEUX H Z. Neutron imaging and applications[M]. New York: Springer, 2009: 987.
|
[55] |
贺林峰. 快速中子照相技术及其在两相流研究中的应用[D]. 北京: 中国原子能科学研究院,2014.
|
[56] |
叶晗. 基于Perona-Malik的中子图像去噪研究[D]. 长春: 东北师范大学,2020.
|
[57] |
赵辰一. 低对比度核成像增强方法研究[D]. 长春: 东北师范大学,2018.
|
[58] |
BUADES A, COLL B, MOREL J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490-530.
|
[59] |
DABOV K, FOI A, KATKOVNIK V, et al. Image denoising with block-matching and 3D filtering[C]//Proceedings of SPIE 6064, Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning. San Jose: SPIE, 2006: 606414.
|
[60] |
ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745.
|
[61] |
吴晓阳. 噪声强度估计及其在中子图像去噪中的应用研究[D]. 长春: 东北师范大学,2019.
|
[62] |
CIMBALA J M, SATHIANATHAN D. Streakline flow visualization with neutron radiography[J]. Experiments in Fluids, 1988, 6(8): 547-552. doi: 10.1007/BF00196601
|
[63] |
OGINO F. Application of neutron radiography to study of liquid-solid two phase flow[J]. Proceedings of WCNR-4, 1994: 339-346.
|
[64] |
TAKENAKA N, FUJII T, ONO A, et al. Visualization of streak lines in liquid metal by neutron radiography[J]. Nondestructive Testing and Evaluation, 1994, 11(2-3): 107-113. doi: 10.1080/10589759408952823
|
[65] |
MA X F, TAKEDA T. Asymmetric Abel inversion by neural network for reconstruction of plasma density distribution[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 492(1-2): 178-189.
|
[66] |
DUPONT J, MIGNOT G, ZBORAY R, et al. Infrared film thickness measurement: comparison with cold neutron imaging[J]. Journal of Nuclear Science and Technology, 2016, 53(5): 673-681.
|