Citation: | Wu Jie, Su Xingkang, Cai Jiejin, Gong Ziqi, Gu Long. Development and Validation of a Four-Parameter SST k-ω-kθ-εθ Model for LBE Flow and Heat Transfer[J]. Nuclear Power Engineering, 2025, 46(1): 100-106. doi: 10.13832/j.jnpe.2025.01.0100 |
[1] |
魏诗颖,王成龙,田文喜,等. 铅基快堆关键热工水力问题研究综述[J]. 原子能科学技术,2019, 53(2): 326-336. doi: 10.7538/yzk.2018.youxian.0335
|
[2] |
KAYS W M. Turbulent prandtl number—where are we?[J]. Journal of Heat Transfer, 1994, 116(2): 284-295. doi: 10.1115/1.2911398
|
[3] |
SHAMS A, ROELOFS F, TISELJ I, et al. A collaborative effort towards the accurate prediction of turbulent flow and heat transfer in low-Prandtl number fluids[J]. Nuclear Engineering and Design, 2020, 366: 110750.
|
[4] |
CHENG X, TAK N I. CFD analysis of thermal–hydraulic behavior of heavy liquid metals in sub-channels[J]. Nuclear Engineering and Design, 2006, 236(18): 1874-1885. doi: 10.1016/j.nucengdes.2006.02.001
|
[5] |
SHAMS A, DE SANTIS A, ROELOFS F. An overview of the AHFM-NRG formulations for the accurate prediction of turbulent flow and heat transfer in low-Prandtl number flows[J]. Nuclear Engineering and Design, 2019, 355: 110342. doi: 10.1016/j.nucengdes.2019.110342
|
[6] |
MANSERVISI S, MENGHINI F. A CFD four parameter heat transfer turbulence model for engineering applications in heavy liquid metals[J]. International Journal of Heat and Mass Transfer, 2014, 69: 312-326. doi: 10.1016/j.ijheatmasstransfer.2013.10.017
|
[7] |
何少鹏,王明军,章静,等. 基于OpenFOAM的液态金属铅铋三维流动换热特性数值模拟研究[J]. 原子能科学技术,2021, 55(6): 1007-1014. doi: 10.7538/yzk.2020.youxian.0445
|
[8] |
苏兴康,顾龙,彭天骥,等. 基于OpenFOAM的四方程模型研究[J]. 核动力工程,2021, 42(S1): 26-32.
|
[9] |
苏兴康,顾龙,李显文,等. 基于k-ε-k θ-ε θ模型的液态金属三角形棒束数值传热研究[J]. 原子能科学技术,2022, 56(12): 2735-2746. doi: 10.7538/yzk.2021.youxian.1018
|
[10] |
邓诗雨,卢涛,邓坚,等. 液态铅铋合金湍流普朗特数及RANS模型优选[J]. 核动力工程,2023, 44(2): 98-103.
|
[11] |
MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003, 4: 625-632.
|
[12] |
NAGANO Y, KIM C. A two-equation model for heat transport in wall turbulent shear flows[J]. Journal of Heat Transfer, 1988, 110(3): 583-589. doi: 10.1115/1.3250532
|
[13] |
IBRAGIMOV M K, SUBBOTIN V I, USHAKOV P A. Investigation of heat transfer in the turbulent flow of liquid metals in tubes[J]. The Soviet Journal of Atomic Energy, 1961, 8(1): 48-50.
|
[14] |
SKUPINSKI E, TORTEL J, VAUTREY L. Determination des coefficients de convection d’un alliage sodium-potassium dans un tube circulaire[J]. International Journal of Heat and Mass Transfer, 1965, 8(6): 937-951. doi: 10.1016/0017-9310(65)90077-3
|
[15] |
KIRILLOV P L, USHAKOV P A. Heat transfer to liquid metals: specific features, methods of investigation, and main relationships[J]. Thermal Engineering, 2001, 48(1): 50-59.
|
[16] |
JOHNSON H A, HARTNETT J P, CLABAUGH W J. Heat transfer to molten lead-bismuth eutectic in turbulent pipe flow[J]. Transactions of the American Society of Mechanical Engineers, 2022, 75: 1191-1198.
|
[17] |
OECD, NEA. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies - 2015 Edition[M]. Paris: OECD Publishing, 2015:27-131.
|
[18] |
PACIO J, DAUBNER M, FELLMOSER F, et al. Experimental study of heavy-liquid metal (LBE) flow and heat transfer along a hexagonal 19-rod bundle with wire spacers[J]. Nuclear Engineering and Design, 2016, 301: 111-127.
|
[19] |
PACIO J, CHEN S K, CHEN Y M, et al. Analysis of pressure losses and flow distribution in wire-wrapped hexagonal rod bundles for licensing. Part II: Evaluation of public experimental data[J]. Nuclear Engineering and Design, 2022, 388: 111606. doi: 10.1016/j.nucengdes.2021.111606
|