Citation: | Yuan Bo, Sun Jie, Xiao Yao, Ding Guanqun, Gu Hanyang. Numerical Study on Convective Heat Transfer at Low Flow and Spacer Effects in Lead-bismuth Eutectic[J]. Nuclear Power Engineering, 2025, 46(1): 128-135. doi: 10.13832/j.jnpe.2025.01.0128 |
[1] |
ZHANG J S. Lead–Bismuth Eutectic (LBE): a coolant candidate for Gen. IV advanced nuclear reactor concepts[J]. Advanced Engineering Materials, 2014, 16(4): 349-356. doi: 10.1002/adem.201300296
|
[2] |
GUO C, ZHAO P C, DENG J, et al. Safety analysis of small modular natural circulation lead-cooled fast reactor SNCLFR-100 under unprotected transient[J]. Frontiers in Energy Research, 2021, 9: 678939. doi: 10.3389/fenrg.2021.678939
|
[3] |
XIAO Y, LI J L, DING G Q, et al. Numerical study of spacer-induced heat transfer impairment in mixed and free convection heat transfer of water upward flow[J]. International Communications in Heat and Mass Transfer, 2022, 137: 106294. doi: 10.1016/j.icheatmasstransfer.2022.106294
|
[4] |
JACKSON J D, COTTON M A, AXCELL B P. Studies of mixed convection in vertical tubes[J]. International Journal of Heat and Fluid Flow, 1989, 10(1): 2-15. doi: 10.1016/0142-727X(89)90049-0
|
[5] |
丁冠群,肖瑶,高新力,等. 格架对低流量对流传热影响的数值研究[J]. 核动力工程,2022, 43(6): 8-14.
|
[6] |
LIU D, GU H Y. Study on heat transfer behavior in rod bundles with spacer grid[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1065-1075. doi: 10.1016/j.ijheatmasstransfer.2017.12.121
|
[7] |
LIU D, GU H Y. Mixed convection heat transfer in a 5 × 5 rod bundles[J]. International Journal of Heat and Mass Transfer, 2017, 113: 914-921. doi: 10.1016/j.ijheatmasstransfer.2017.05.113
|
[8] |
LI J L, XIAO Y, GU H Y, et al. Development of a correlation for mixed convection heat transfer in rod bundles[J]. Annals of Nuclear Energy, 2021, 155: 108151. doi: 10.1016/j.anucene.2021.108151
|
[9] |
LIU Z P, HUANG D S, WANG C L, et al. Flow and heat transfer analysis of lead–bismuth eutectic flowing in a tube under rolling conditions[J]. Nuclear Engineering and Design, 2021, 382: 111373. doi: 10.1016/j.nucengdes.2021.111373
|
[10] |
冀南,杨俊康,赵鹏程,等. 耦合多变量LSTM与优化算法的铅铋反应堆事故参数预测方法研究[J]. 核动力工程,2023, 44(5): 64-70.
|
[11] |
苏子威,周涛,刘梦影,等. 液态铅铋合金热物性研究[J]. 核技术,2013, 36(9): 35-39.
|
[12] |
曾陈,张蕊,刘茂龙,等. 不同湍流模型对铅-铋凝固模拟的影响研究[J]. 核动力工程,2023, 44(S1): 40-45.
|
[13] |
梁瑞仙,杨凌峰,王译锋,等. 液态铅铋合金回路氧输运特性的数值研究[J]. 核动力工程,2022, 43(6): 187-194.
|
[14] |
FAZIO C. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies[M]. Paris: OECD, 2016: 70-125.
|
[15] |
CHEN F, HUAI X L, CAI J, et al. Investigation on the applicability of turbulent-Prandtl-number models for liquid lead-bismuth eutectic[J]. Nuclear Engineering and Design, 2013, 257: 128-133. doi: 10.1016/j.nucengdes.2013.01.005
|
[16] |
AOKI S. A consideration on the heat transfer in liquid metal[J]. Bulletin of the Tokyo Institute of Technology, 1963, 54: 63-73.
|
[17] |
REYNOLDS A J. The prediction of turbulent Prandtl and Schmidt numbers[J]. International Journal of Heat and Mass Transfer, 1975, 18(9): 1055-1069. doi: 10.1016/0017-9310(75)90223-9
|
[18] |
JISCHA M, RIEKE H B. About the prediction of turbulent Prandtl and Schmidt numbers from modeled transport equations[J]. International Journal of Heat and Mass Transfer, 1979, 22(11): 1547-1555. doi: 10.1016/0017-9310(79)90134-0
|
[19] |
KAYS W M. Turbulent Prandtl number-where are we?[J]. Journal of Heat Transfer, 1994, 116(2): 284-295. doi: 10.1115/1.2911398
|
[20] |
CHENG X, TAK N I. Investigation on turbulent heat transfer to lead–bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393. doi: 10.1016/j.nucengdes.2005.09.006
|
[21] |
JOHNSON H A, HARTNETT J P, CLABAUGH W J. Heat transfer to molten lead-bismuth eutectic in turbulent pipe flow[J]. Journal of Fluids Engineering, 1953, 75(6): 1191-1198.
|
[22] |
张双雷,李良星,宋立明. 轴流铅铋泵流场分析及优化[J]. 核动力工程,2022, 43(3): 158-164.
|
[23] |
王凯琳,李良星,张双雷,等. 轴流铅铋泵的设计及其水力性能分析[J]. 西安交通大学学报,2020, 54(11): 166-174.
|
[24] |
曾付林,张小龙,赵鹏程. 铅铋冷却紧密栅内环形燃料棒外周向温度分布不均匀性研究[J]. 核动力工程,2023, 44(6): 95-103.
|
[25] |
王俊杰. 铅铋冷却绕丝燃料组件热工水力及流致振动特性分析[D]. 上海: 上海交通大学,2022.
|
[26] |
葛志浩. 液态金属湍流换热的直接数值模拟研究[D]. 合肥: 中国科学技术大学,2018.
|
[27] |
MAROCCO L, DI VALMONTANA A A, WETZEL T. Numerical investigation of turbulent aided mixed convection of liquid metal flow through a concentric annulus[J]. International Journal of Heat and Mass Transfer, 2017, 105: 479-494. doi: 10.1016/j.ijheatmasstransfer.2016.09.107
|
[28] |
UMAVATHI J C, KUMAR J P, CHAMKHA A J, et al. Mixed convection in a vertical porous channel[J]. Transport in Porous Media, 2005, 61(3): 315-335. doi: 10.1007/s11242-005-0260-5
|
[29] |
祝家银. 垂直圆管内液态金属湍流混合对流换热的大涡模拟研究[D]. 合肥: 中国科学技术大学,2019.
|
[30] |
XIAO Y, PAN J S, GU H Y. Numerical investigation of spacer effects on heat transfer of supercritical fluid flow in an annular channel[J]. International Journal of Heat and Mass Transfer, 2018, 121: 343-353. doi: 10.1016/j.ijheatmasstransfer.2018.01.030
|
[31] |
DING G Q, LI N, LIU B, et al. Numerical study of mixed and free convection heat transfer under ocean conditions[J]. International Journal of Heat and Mass Transfer, 2023, 203: 123811. doi: 10.1016/j.ijheatmasstransfer.2022.123811
|