Citation: | Jin Guangyuan, Bai Jinghu, Wang Rui, Li Weilian, Du Lipeng, Zhang Wenchao. Research on Disturbance Wave Characteristics of Annular Flow on Edge and Corner Rods of Rod Bundle Channel[J]. Nuclear Power Engineering, 2025, 46(1): 143-151. doi: 10.13832/j.jnpe.2025.01.0143 |
[1] |
阎昌琪,孙中宁. 竖直管内两相流逆向流动特性研究[J]. 核动力工程,2001, 22(1): 15-18. doi: 10.3969/j.issn.0258-0926.2001.01.004
|
[2] |
田文喜,蔚江涛,汪志伟,等. AP1000波动管内空气-水液泛特性试验研究[J]. 核动力工程,2017, 38(5): 151-155.
|
[3] |
米争鹏,谭思超,李兴,等. 棒束通道温度场可视化实验研究[J]. 原子能科学技术,2018, 52(5): 847-854. doi: 10.7538/yzk.2018.52.05.0847
|
[4] |
CLARK C, GRIFFITHS M, CHEN S W, et al. Drift-flux correlation for rod bundle geometries[J]. International Journal of Heat and Fluid Flow, 2014, 48: 1-14. doi: 10.1016/j.ijheatfluidflow.2014.03.008
|
[5] |
ALEKSEENKO S, ANTIPIN V, CHERDANTSEV A, et al. Two-wave structure of liquid film and wave interrelation in annular gas-liquid flow with and without entrainment[J]. Physics of Fluids, 2009, 21(6): 061701. doi: 10.1063/1.3151999
|
[6] |
ALEKSEENKO S, CHERDANTSEV A, CHERDANTSEV M, et al. Application of a high-speed laser-induced fluorescence technique for studying the three-dimensional structure of annular gas-liquid flow[J]. Experiments in Fluids, 2012, 53(1): 77-89. doi: 10.1007/s00348-011-1200-5
|
[7] |
PHAM S H, KAWARA Z, YOKOMINE T, et al. Detailed observations of wavy interface behaviors of annular two-phase flow on rod bundle geometry[J]. International Journal of Multiphase Flow, 2014, 59: 135-144. doi: 10.1016/j.ijmultiphaseflow.2013.11.004
|
[8] |
PHAM S H, KAWARA Z, YOKOMINE T, et al. Measurements of liquid film and droplets of annular two-phase flow on a rod-bundle geometry with spacer[J]. International Journal of Multiphase Flow, 2015, 70: 35-57. doi: 10.1016/j.ijmultiphaseflow.2014.11.010
|
[9] |
KUNUGI T. Summary: study on wavy interface behavior and droplet entrainment of annular two-phase flow in rod bundle geometry with spacers[J]. Nuclear Engineering and Design, 2018, 336: 45-53. doi: 10.1016/j.nucengdes.2017.05.025
|
[10] |
金光远,张文超,杜利鹏. 棒束通道内环状流气液界面行为及形成机理研究[J]. 原子能科学技术,2018, 52(9): 1618-1624. doi: 10.7538/yzk.2018.youxian.0018
|
[11] |
WANG G Y, DANG Z R, ISHII M. Wave structure and velocity in vertical upward annular two-phase flow[J]. Experimental Thermal and Fluid Science, 2021, 120: 110205. doi: 10.1016/j.expthermflusci.2020.110205
|
[12] |
陆廷济,胡德敬,陈铭南. 物理实验教程[M]. 上海: 同济大学出版社,2000: 6-13.
|
[13] |
BERNA C, ESCRIVÁ A, MUÑOZ-COBO J L, et al. Review of droplet entrainment in annular flow: interfacial waves and onset of entrainment[J]. Progress in Nuclear Energy, 2014, 74: 14-43. doi: 10.1016/j.pnucene.2014.01.018
|
[14] |
FUKANO T, FURUKAWA T. Prediction of the effects of liquid viscosity on interfacial shear stress and frictional pressure drop in vertical upward gas-liquid annular flow[J]. International Journal of Multiphase Flow, 1998, 24(4): 587-603. doi: 10.1016/S0301-9322(97)00070-0
|
[15] |
JU P, BROOKS C S, ISHII M, et al. Film thickness of vertical upward co-current adiabatic flow in pipes[J]. International Journal of Heat and Mass Transfer, 2015, 89: 985-995. doi: 10.1016/j.ijheatmasstransfer.2015.06.002
|
[16] |
PAN L M, HE H, JU P, et al. Experimental study and modeling of disturbance wave height of vertical annular flow[J]. International Journal of Heat and Mass Transfer, 2015, 89: 165-175. doi: 10.1016/j.ijheatmasstransfer.2015.05.073
|
[17] |
RIVERA Y, MUÑOZ-COBO J L, CUADROS J L, et al. Experimental study of the effects produced by the changes of the liquid and gas superficial velocities and the surface tension on the interfacial waves and the film thickness in annular concurrent upward vertical flows[J]. Experimental Thermal and Fluid Science, 2021, 120: 110224. doi: 10.1016/j.expthermflusci.2020.110224
|
[18] |
JU P, LIU Y, YANG X H, et al. Wave characteristics of vertical upward adiabatic annular flow in pipes[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118701. doi: 10.1016/j.ijheatmasstransfer.2019.118701
|
[19] |
KUMAR R, GOTTMANN M, SRIDHAR K R. Film thickness and wave velocity measurements in a vertical duct[J]. Journal of Fluids Engineering, 2002, 124(3): 634-642. doi: 10.1115/1.1493808
|
[20] |
SCHUBRING D, SHEDD T A, HURLBURT E T. Planar laser-induced fluorescence (PLIF) measurements of liquid film thickness in annular flow. Part II: analysis and comparison to models[J]. International Journal of Multiphase Flow, 2010, 36(10): 825-835. doi: 10.1016/j.ijmultiphaseflow.2010.02.002
|
[21] |
ALAMU M B, AZZOPARDI B J. Wave and drop periodicity in transient annular flow[J]. Nuclear Engineering and Design, 2011, 241(12): 5079-5092. doi: 10.1016/j.nucengdes.2011.08.015
|
[22] |
AZZOPARDI B J. Gas-liquid flows[M]. New York: Begell House, 2006: 98-105.
|
[23] |
CUADROS J L, RIVERA Y, BERNA C, et al. Characterization of the gas-liquid interfacial waves in vertical upward co-current annular flows[J]. Nuclear Engineering and Design, 2019, 346: 112-130. doi: 10.1016/j.nucengdes.2019.03.008
|
[24] |
周云龙,尹洪梅,丁会晓. 多尺度熵在棒束通道气液两相流压差信号分析中的应用[J]. 化工学报,2016, 67(9): 3625-3632.
|