Citation: | Guo Junying, Chen Shenggang, Li Zhongcheng, Liu Jinlong, Zhou Chuanbo. Reasearch on Corrosion Resistance of Containment Steel Liner in Simulated Concrete Pore Solution[J]. Nuclear Power Engineering, 2025, 46(1): 199-208. doi: 10.13832/j.jnpe.2025.01.0199 |
[1] |
BERTOLINI L, ELSENER B, PEDEFERRI P, et al. Corrosion of steel in concrete: prevention, diagnosis, repair[M]. 2nd ed. Berlin: Wiley-VCH Verlag GmBH & Co. KGaA, 2013: 5-6.
BERTOLINI L,ELSENER B,PEDEFERRI P,et al. Corrosion of steel in concrete: prevention,diagnosis,repair[M]. 2nd ed. Berlin: Wiley-VCH Verlag GmBH & Co. KGaA,2013:5-6.
|
[2] |
GUO Q Q, WANG S X, CHEN S G, et al. Structural safety reliability of concrete buildings of HTR-PM in accidental double-ended break of hot gas ducts[J]. Nuclear Engineering and Technology, 2020, 52(5): 1051-1065. doi: 10.1016/j.net.2019.10.015
|
[3] |
ERLER B A, WEYERS R E, SAGUES A, et al. Nuclear containment steel liner corrosion workshop: final summary and recommendation report: SAND2010-8718; TRN: US1201117[R]. Albuquerque: Sandia National Laboratories, 2011.
|
[4] |
DUNN D S, PULVIRENTI A L, HISER M A. Containment liner corrosion operating experience summary, technical letter report—revision 1:report of the United States Nuclear Regulatory Commission[R]. Rockville: U. S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research, 2011.
|
[5] |
PAEK Y, KIM S, YOON E, et al. Introduction of containment liner plate (CLP) corrosion[C]//Transactions of the Korean Nuclear Society Spring Meeting. Jeju:Korean Nuclear Society,2018.
|
[6] |
CHOI W J, BAHN C B. Evaluation of corrosion behavior of carbon steel for containment liner plate according to environmental factors[C]//Transactions of the Korean Nuclear Society Spring Meeting. Jeju:Korean Nuclear Society,2019.
|
[7] |
廖开星,吴剑剑,李毅,等. 核电厂安全壳钢衬里的腐蚀防护与控制初探[J]. 腐蚀与防护,2019, 40(1): 61-65. doi: 10.11973/fsyfh-201901013
|
[8] |
郭俊营,李忠诚,李文旭,等. 美国在役核电厂安全壳钢衬里锈蚀及修复技术研究进展[J]. 建筑结构,2022, 52(2): 127-134.
|
[9] |
曹光明,汤军舰,林飞,等. 典型氧化铁皮结构电化学腐蚀行为[J]. 中南大学学报: 自然科学版,2018, 49(6): 1366-1372.
|
[10] |
谢春洋,孔德军. 激光淬火对Cr12MoV钢渗硼层盐雾腐蚀和电化学腐蚀的影响[J]. 中南大学学报: 自然科学版,2016, 47(8): 2614-2620.
|
[11] |
陈杰,刘海霞,刘光磊,等. NaCl溶液腐蚀后304不锈钢的超声空蚀特征[J]. 中南大学学报: 自然科学版,2021, 52(5): 1436-1445.
|
[12] |
施锦杰,孙伟,耿国庆. 模拟混凝土孔溶液对钢筋钝化的影响[J]. 建筑材料学报,2011, 14(4): 452-458. doi: 10.3969/j.issn.1007-9629.2011.04.004
|
[13] |
ABD EL HALEEM S M, ABD EL AAL E E, ABD EL WANEES S, et al. Environmental factors affecting the corrosion behaviour of reinforcing steel: I. the early stage of passive film formation in Ca(OH)2 solutions[J]. Corrosion Science, 2010, 52(12): 3875-3882. doi: 10.1016/j.corsci.2010.07.035
|
[14] |
苑旭雯. 模拟混凝土孔隙液中不锈钢自然钝化及脱钝行为研究[D]. 合肥: 中国科学技术大学,2021.
|
[15] |
LIU M, CHENG X Q, LI X G, et al. Corrosion behavior of Cr modified HRB400 steel rebar in simulated concrete pore solution[J]. Construction and Building Materials, 2015, 93: 884-890. doi: 10.1016/j.conbuildmat.2015.05.073
|
[16] |
DE ROJAS R R. New developments in steel reinforcement protection from corrosion[M]. Massachusetts: Massachusetts Institute of Technology, 2001: 29-31.
DE ROJAS R R. New developments in steel reinforcement protection from corrosion[M]. Massachusetts: Massachusetts Institute of Technology,2001:29-31.
|
[17] |
SHI J J, MING J, WU M. Electrochemical behavior and corrosion products of Cr-modified reinforcing steels in saturated Ca(OH)2 solution with chlorides[J]. Cement and Concrete Composites, 2020, 110: 103587. doi: 10.1016/j.cemconcomp.2020.103587
|
[18] |
SHI J J, MING J, SUN W. Electrochemical behaviour of a novel alloy steel in alkali-activated slag mortars[J]. Cement and Concrete Composites, 2018, 92: 110-124. doi: 10.1016/j.cemconcomp.2018.06.004
|
[19] |
明静,施锦杰,孙伟. 混凝土中低合金钢筋腐蚀产物的微结构分析[J]. 建筑材料学报,2020, 23(2): 347-353.
|
[20] |
SERDAR M, MERAL C, KUNZ M, et al. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete[J]. Cement and Concrete Research, 2015, 71: 93-105. doi: 10.1016/j.cemconres.2015.02.004
|
[21] |
SUN J L, TANG H J, WANG C L, et al. Effects of alloying elements and microstructure on stainless steel corrosion: a review[J]. Steel Research International, 2022, 93(5): 2100450. doi: 10.1002/srin.202100450
|
[22] |
YUAN X W, WANG X, YANG H Y. Effects of pH and Cl− content on degradation process of pre-passivated stainless steels in an alkaline solution[J]. Journal of the Electrochemical Society, 2022, 169(3): 031506. doi: 10.1149/1945-7111/ac595b
|
[23] |
CAO Y, GEHLEN C, ANGST U, et al. Critical chloride content in reinforced concrete—an updated review considering Chinese experience[J]. Cement and Concrete Research, 2019, 117: 58-68. doi: 10.1016/j.cemconres.2018.11.020
|
[24] |
The British Standards Institution. Flat products made of steels for pressure purposes-parts 2: non-alloy and alloy steels with specified elevated temperature properties: BS EN 10028-2: 2009[S]. 2017:6-9.
|
[25] |
李文旭. 核电厂安全壳钢衬里锈蚀后力学性能的试验研究[D]. 大连: 大连理工大学,2021.
|
[26] |
赵起越,范益,范恩点,等. 低合金结构钢腐蚀的影响因素及其耐蚀性判据[J]. 工程科学学报,2021, 43(2): 255-262.
|
[27] |
卢金马,黄俊铭,余波,等. 电极工作面积和孔隙液pH值对钢筋脱钝临界氯离子浓度的影响[J]. 建筑材料学报,2021, 24(5): 994-1001. doi: 10.3969/j.issn.1007-9629.2021.05.013
|
[28] |
SHI J J, WANG D Q, MING J, et al. Long-term electrochemical behavior of low-alloy steel in simulated concrete pore solution with chlorides[J]. Journal of Materials in Civil Engineering, 2018, 30(4): 04018042. doi: 10.1061/(ASCE)MT.1943-5533.0002194
|
[29] |
SHI J J, SUN W, JIANG J Y, et al. Influence of chloride concentration and pre-passivation on the pitting corrosion resistance of low-alloy reinforcing steel in simulated concrete pore solution[J]. Construction and Building Materials, 2016, 111: 805-813. doi: 10.1016/j.conbuildmat.2016.02.107
|
[30] |
LIU Y Q, SHI J J. Corrosion resistance of carbon steel in alkaline concrete pore solutions containing phytate and chloride ions[J]. Corrosion Science, 2022, 205: 110451. doi: 10.1016/j.corsci.2022.110451
|
[31] |
WANG D Q, MING J, SHI J J. Enhanced corrosion resistance of rebar in carbonated concrete pore solutions by Na2HPO4 and benzotriazole[J]. Corrosion Science, 2020, 174: 108830. doi: 10.1016/j.corsci.2020.108830
|
[32] |
YAO N, ZHOU X C, LIU Y Q, et al. Synergistic effect of red mud and fly ash on passivation and corrosion resistance of 304 stainless steel in alkaline concrete pore solutions[J]. Cement and Concrete Composites, 2022, 132: 104637. doi: 10.1016/j.cemconcomp.2022.104637
|
[33] |
LIU Y Q, ZHOU X C, GUAN X D, et al. Synergistic inhibition mechanism of phosphate and phytic acid on carbon steel in carbonated concrete pore solutions containing chlorides[J]. Corrosion Science, 2022, 208: 110637. doi: 10.1016/j.corsci.2022.110637
|
[34] |
LUO H, DONG C F, LI X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride[J]. Electrochimica Acta, 2012, 64: 211-220. doi: 10.1016/j.electacta.2012.01.025
|
[35] |
BURAK GUNAY H, GHODS P, BURKAN ISGOR O, et al. Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS[J]. Applied Surface Science, 2013, 274: 195-202. doi: 10.1016/j.apsusc.2013.03.014
|
[36] |
OMRAN M, FABRITIUS T, ELMAHDY A M, et al. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore[J]. Applied Surface Science, 2015, 345: 127-140. doi: 10.1016/j.apsusc.2015.03.209
|
[37] |
GHODS P, BURKAN ISGOR O, BENSEBAA F, et al. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution[J]. Corrosion Science, 2012, 58: 159-167. doi: 10.1016/j.corsci.2012.01.019
|
[38] |
ANGST U, ELSENER B, LARSEN C K, et al. Critical chloride content in reinforced concrete—a review[J]. Cement and Concrete Research, 2009, 39(12): 1122-1138. doi: 10.1016/j.cemconres.2009.08.006
|
[39] |
ANDRADE C, ALONSO C. Corrosion rate monitoring in the laboratory and on-site[J]. Construction and Building Materials, 1996, 10(5): 315-328. doi: 10.1016/0950-0618(95)00044-5
|
[40] |
KOUŘIL M, NOVÁK P, BOJKO M. Threshold chloride concentration for stainless steels activation in concrete pore solutions[J]. Cement and Concrete Research, 2010, 40(3): 431-436. doi: 10.1016/j.cemconres.2009.11.005
|