Citation: | Zhang Bo, Yuan Pan, Xiao Zhong, Guang Honghao, Chai Zhenhong, Duan Xin, Xin Yong, Zhu Fawen, Sun Kun, Li Baotong. Structure Optimization of Bottom Nozzle for Flow Resistance- Filtration-Bearing Performance[J]. Nuclear Power Engineering, 2025, 46(1): 225-231. doi: 10.13832/j.jnpe.2025.01.0225 |
[1] |
陈宝山,刘承新. 轻水堆燃料元件[M]. 北京: 化学工业出版社,2007: 385.
|
[2] |
焦拥军,肖忠,李云,等. “华龙一号”燃料组件设计研究及验证[J]. 中国核电,2017, 10(4): 478-482, 488.
|
[3] |
粟敏,陈平,邝临源,等. CF3燃料组件下管座力学性能研究[J]. 核动力工程,2018, 39(S1): 62-65.
|
[4] |
谷明非,李垣明,茹俊,等. 基于Inventor的燃料组件下管座虚拟设计[J]. 核动力工程,2015, 36(S2): 82-83.
|
[5] |
冯琳娜,陈杰,粟敏,等. CF3燃料组件下管座水力学性能研究[J]. 核动力工程,2022, 43(S2): 208-212.
|
[6] |
DUAN M H, ZHAO M F. A numerical research of the resistance characteristics of the bottom nozzle in the annular fuel assembly[C]//Proceedings of 2018 26th International Conference on Nuclear Engineering. London: Nuclear Engineering Division, 2018.
|
[7] |
JUNG M S, KIM K T. Debris filtering efficiency and its effect on long term cooling capability[J]. Nuclear Engineering and Design, 2013, 261: 1-9. doi: 10.1016/j.nucengdes.2013.03.039
|
[8] |
PARK N G, PARK J K, KIM J I, et al. PWR fuel debris filtering performance measurement method and its application[J]. Nuclear Engineering and Design, 2015, 281: 96-102. doi: 10.1016/j.nucengdes.2014.11.024
|
[9] |
PARK J K, LEE S K, KIM J H. Development of an evaluation method for nuclear fuel debris-filtering performance[J]. Nuclear Engineering and Technology, 2018, 50(5): 738-744. doi: 10.1016/j.net.2018.03.011
|
[10] |
DENG S, REN Q Y, ZHANG J, et al. Numerical simulation analysis of debris filtration in the bottom nozzle[J]. Annals of Nuclear Energy, 2024, 198: 110301. doi: 10.1016/j.anucene.2023.110301
|
[11] |
何晗瑾. 基于代理模型的多目标方法研究及应用[D]. 成都:电子科技大学,2022.
|
[12] |
杨燕昭,汪思航,陈浮,等. 基于Kriging模型的CW型原表面换热单元体优化设计[J]. 工程热物理学报,2022, 43(12): 3244-3251.
|
[13] |
OLSSON A, SANDBERG G, DAHLBLOM O. On Latin hypercube sampling for structural reliability analysis[J]. Structural Safety, 2003, 25(1): 47-68.
|
[14] |
PENG W, ZHANG J, SHI M, et al. Low-frequency sound insulation optimisation design of membrane-type acoustic metamaterials based on Kriging surrogate model[J]. Materials & Design, 2023, 225: 111491.
|
[15] |
WANG D Y, CHEN W R, ZHU Y et al. An improved lump mass stick model of a nuclear power plant based on the Kriging surrogate model[J]. Nuclear Engineering and Design, 2024, 423: 113182. doi: 10.1016/j.nucengdes.2024.113182
|