Advance Search
Volume 46 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
Li Tongxi, Liu Zhilong, Luo Qian, Zeng Zhen, Wang Qinchao, Nie Changhua. Centrifugal Pump Fault Identification Technology Based on CEEMDAN-PCA-AC-CNN Model[J]. Nuclear Power Engineering, 2025, 46(1): 265-272. doi: 10.13832/j.jnpe.2025.01.0265
Citation: Li Tongxi, Liu Zhilong, Luo Qian, Zeng Zhen, Wang Qinchao, Nie Changhua. Centrifugal Pump Fault Identification Technology Based on CEEMDAN-PCA-AC-CNN Model[J]. Nuclear Power Engineering, 2025, 46(1): 265-272. doi: 10.13832/j.jnpe.2025.01.0265

Centrifugal Pump Fault Identification Technology Based on CEEMDAN-PCA-AC-CNN Model

doi: 10.13832/j.jnpe.2025.01.0265
  • Received Date: 2024-03-21
  • Rev Recd Date: 2024-06-21
  • Publish Date: 2025-02-15
  • In order to ensure the long-term healthy and stable operation of centrifugal pump, on-line monitoring and fault identification is particularly important. Therefore, this paper presents a fault-identification model based on adaptive noise, with the methods of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Principal Component Analysis (PCA) and Convolution Neural Network (CNN) combined with Autocorrelation (AC). Firstly, vibration signals are collected and decomposed by CEEMDAN. Then, we discriminate the obtained Intrinsic Mode Functions (IMF) fraction and eliminate the noise fraction to reconstruct the first round of denoised signals. After that, PCA is adopted to remove noise in the denoised signals, and the signals which have been filtered twice are then processed by AC and input to CNN to train the model. Through the experimental verification of a centrifugal pump fault, the results show that compared to traditional methods like double-layer noise reduction with CNN and CEEMD-wavelet denoising-AC-CNN, the model presented in this paper is more resistant to interference and has faster convergence speed. Also, it has the advantages of higher precision and better robustness. At the same order of magnitude, its precision can reach 97.9%.

     

  • loading
  • [1]
    吴秀星,关佳亮. 旋转机械故障诊断与状态监测发展综述[J]. 设备管理与维修,2018(10): 170-173.
    [2]
    赵磊,张永祥,朱丹宸. 复杂装备滚动轴承的故障诊断与预测方法研究综述[J]. 中国测试,2020, 46(3): 17-25. doi: 10.11857/j.issn.1674-5124.2019040083
    [3]
    傅露莹,齐慧君,李同春,等. 基于CEEMDAN和相关性分析的大坝位移预测[J]. 三峡大学学报: 自然科学版,2024, 46(1): 1-6.
    [4]
    贾文哲,闻麒,李春,等. 改进CEEMDAN算法与CNN融合的深度学习系泊故障研究[J]. 热能动力工程,2023, 38(11): 141-150.
    [5]
    张健,尤文斌,丁永红,等. 基于CEEMDAN-PCA的冲击波信号降噪研究[J]. 弹箭与制导学报,2022, 42(4): 24-28.
    [6]
    刘廷宇,江泉,李晔,等. 旋转机械故障的信号处理与诊断方法综述[J]. 能源与环保,2018, 40(1): 163-166.
    [7]
    李炳锐,李荣昌. 基于PCA-PSO-SVM的造纸污水处理过程故障诊断方法[J]. 自动化应用,2023, 64(21): 244-247.
    [8]
    孙英淳,唐斌,蔡先阳. 基于倒谱-对称点图谱-卷积神经网络的内燃机增压器滚动轴承故障诊断[J]. 内燃机工程,2023, 44(6): 69-76.
    [9]
    蒲小平,陈克兴,徐金梧,等. 基于神经网络的轴承故障诊断方法[J]. 北京科技大学学报,1993, 15(6): 610-613.
    [10]
    吴昊臻,许燕,周建平,等. 基于卷积神经网络的抽油机故障诊断[J]. 燕山大学学报,2024, 48(1): 30-38. doi: 10.3969/j.issn.1007-791X.2024.01.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (24) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return